Display options
Share it on

Transl Stroke Res. 2011 Sep;2(3):366-75. doi: 10.1007/s12975-011-0078-0.

Oligogenesis and oligodendrocyte progenitor maturation vary in different brain regions and partially correlate with local angiogenesis after ischemic stroke.

Translational stroke research

Lidan Jiang, Fanxia Shen, Vincent Degos, Marcus Schonemann, Samuel J Pleasure, Synthia H Mellon, William L Young, Hua Su

Affiliations

  1. Center for Cerebrovascular Research Department of Anesthesia and Perioperative Care University of California, San Francisco 1001 Potrero Avenue Room 3C-38 San Francisco, CA 94110, USA.

PMID: 22022343 PMCID: PMC3196661 DOI: 10.1007/s12975-011-0078-0

Abstract

Oligogenesis plays an important role in functional recovery after ischemic stroke. We tested the hypothesis that oligogenesis and the maturation of oligodendrocyte progenitor cells (OPCs) vary in different brain regions using a rat transient middle cerebral artery occlusion (tMCAO) model. Compared to Day 1, olig2(+) OPCs and oligodendrocytes (OLGs) increased in the peri-infarct basal ganglia (BG) 7 (44%) and 14 (61%) days after 2 hours of MCAO; OPCs (PDGFRα(+)) and OLGs (CC1(+)) increased in this region 14 days after tMCAO by 139% and 126%, respectively. Although the olig2(+) cells and OLGs did not increase significantly in the peri-infarct cortex (CTX), the OPCs increased in this region by 95% at Day 14 vs. Day 1 after tMCAO. The numbers of OPCs and OLGs remained low after an initial reduction at Day 1 in the peri-infarct corpus callosum (CC). Correlation analyses showed that the numbers of olig2(+) cells (r=0.73, P=0.03) and OLGs (r=0.74, P=0.02) correlated with local vessel density; however, the number of OPCs did not correlate with vessel density (r=0.43, P=0.24). Our data show that oligogenesis and the maturation of OPCs differ in various brain regions and the difference in regional angiogenic response is one of the potential reasons.

References

  1. Neuron. 1997 Jul;19(1):197-203 - PubMed
  2. J Neurosci Methods. 2006 Sep 15;155(2):285-90 - PubMed
  3. J Cereb Blood Flow Metab. 2009 Jun;29(6):1166-74 - PubMed
  4. Development. 2003 Dec;130(25):6221-31 - PubMed
  5. Nat Rev Neurosci. 2009 Jan;10(1):9-22 - PubMed
  6. Methods Mol Biol. 2011;686:429-46 - PubMed
  7. J Cereb Blood Flow Metab. 2003 Mar;23(3):263-74 - PubMed
  8. Stroke. 1998 Aug;29(8):1715-9; discussion 1719-20 - PubMed
  9. Neuroreport. 2001 Jul 20;12(10):2169-74 - PubMed
  10. Stroke. 1996 Sep;27(9):1641-6; discussion 1647 - PubMed
  11. Exp Brain Res. 2001 Jun;138(3):384-92 - PubMed
  12. Nat Rev Neurosci. 2003 May;4(5):399-415 - PubMed
  13. J Cereb Blood Flow Metab. 1998 Jan;18(1):2-25 - PubMed
  14. J Neurosci. 2009 Apr 8;29(14):4351-5 - PubMed
  15. J Cereb Blood Flow Metab. 2010 Feb;30(2):299-310 - PubMed
  16. PLoS One. 2009 Sep 22;4(9):e7128 - PubMed
  17. Exp Transl Stroke Med. 2009 Nov 13;1:7 - PubMed
  18. Eur Neurol. 2006;56(2):74-7 - PubMed
  19. Stroke. 2003 Jun;34(6):1539-46 - PubMed
  20. Neuropathology. 2007 Aug;27(4):355-63 - PubMed
  21. Brain Res Brain Res Protoc. 1998 Jun;2(4):315-22 - PubMed
  22. Eur J Pharmacol. 1999 Jun 30;375(1-3):41-50 - PubMed
  23. Brain. 1994 Jun;117 ( Pt 3):563-78 - PubMed
  24. Brain Res. 2003 Nov 7;989(2):172-9 - PubMed
  25. Pediatrics. 2003 Jul;112(1 Pt 1):176-80 - PubMed
  26. Neurosci Res. 2009 Nov;65(3):272-9 - PubMed
  27. Stroke. 2010 May;41(5):1032-7 - PubMed
  28. Biol Pharm Bull. 2009 Oct;32(10):1639-44 - PubMed
  29. Ann Neurol. 1999 Sep;46(3):333-42 - PubMed
  30. Eur J Clin Invest. 2009 Apr;39(4):320-7 - PubMed
  31. Nature. 2006 Feb 23;439(7079):988-92 - PubMed
  32. Glia. 1996 Jun;17(2):169-74 - PubMed
  33. Neuron. 1990 Nov;5(5):615-25 - PubMed
  34. J Neurochem. 2008 Oct;107(1):1-19 - PubMed
  35. Exp Transl Stroke Med. 2009 Oct 24;1:6 - PubMed

Publication Types

Grant support