Display options
Share it on

Genet Mol Biol. 2011 Oct;34(4):661-8. doi: 10.1590/S1415-47572011005000043. Epub 2011 Oct 01.

Optimizing expression and purification of an ATP-binding gene gsiA from Escherichia coli k-12 by using GFP fusion.

Genetics and molecular biology

Zhongshan Wang, Quanju Xiang, Guangjun Wang, Haiyan Wang, Yizheng Zhang

Affiliations

  1. College of Life Sciences, Sichuan University, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China.

PMID: 22215971 PMCID: PMC3229122 DOI: 10.1590/S1415-47572011005000043

Abstract

The cloning, expression and purification of the glutathione (sulfur) import system ATP-binding protein (gsiA) was carried out. The coding sequence of Escherichia coli gsiA, which encodes the ATP-binding protein of a glutathione importer, was amplified by PCR, and then inserted into a prokaryotic expression vector pWaldo-GFPe harboring green fluorescent protein (GFP) reporter gene. The resulting recombinant plasmid pWaldo-GFP-GsiA was transformed into various E. coli strains, and expression conditions were optimized. The effect of five E. coli expression strains on the production of the recombinant gsiA protein was evaluated. E. coli BL21 (DE3) was found to be the most productive strain for GsiA-GFP fusion-protein expression, most of which was insoluble fraction. However, results from in-gel and Western blot analysis suggested that expression of recombinant GsiA in Rosetta (DE3) provides an efficient source in soluble form. By using GFP as reporter, the most suitable host strain was conveniently obtained, whereby optimizing conditions for overexpression and purification of the proteins for further functional and structural studies, became, not only less laborious, but also time-saving.

Keywords: Escherichia coli; gene expression; glutathione transporter; green fluorescent protein; gsiA

References

  1. Free Radic Biol Med. 2001 Jun 1;30(11):1191-212 - PubMed
  2. Science. 1992 Dec 4;258(5088):1650-4 - PubMed
  3. J Biol Chem. 2000 May 5;275(18):13259-65 - PubMed
  4. FEBS Lett. 1995 Jul 10;368(1):73-6 - PubMed
  5. J Bacteriol. 1978 Mar;133(3):1126-9 - PubMed
  6. FEBS Lett. 2001 Oct 26;507(2):220-4 - PubMed
  7. J Biol Chem. 1996 Mar 15;271(11):6509-17 - PubMed
  8. J Bacteriol. 2001 Feb;183(4):1489-90 - PubMed
  9. Enzyme Microb Technol. 2000 Jun 1;26(9-10):737-742 - PubMed
  10. J Biol Chem. 1998 Dec 11;273(50):33449-54 - PubMed
  11. Plant Physiol. 1996 Aug;111(4):1145-1152 - PubMed
  12. Nat Methods. 2006 Apr;3(4):303-13 - PubMed
  13. Biochem Pharmacol. 2003 Oct 15;66(8):1499-503 - PubMed
  14. Microbiology (Reading). 1997 Jun;143 ( Pt 6):1885-1889 - PubMed
  15. J Bacteriol. 1986 Oct;168(1):109-14 - PubMed
  16. Nucleic Acids Res. 2009 Jan;37(Database issue):D464-70 - PubMed
  17. Mol Aspects Med. 2009 Feb-Apr;30(1-2):60-76 - PubMed
  18. Ann N Y Acad Sci. 2002 Nov;973:488-504 - PubMed
  19. Mol Cell. 2003 Sep;12(3):651-61 - PubMed
  20. Protein Sci. 2004 Apr;13(4):937-45 - PubMed
  21. J Biol Chem. 1996 Apr 19;271(16):9754-8 - PubMed
  22. Free Radic Res. 1999 Oct;31(4):273-300 - PubMed
  23. J Bacteriol. 1987 Sep;169(9):3926-31 - PubMed
  24. Appl Microbiol Biotechnol. 2006 Sep;72(2):211-22 - PubMed
  25. J Bacteriol. 2005 Sep;187(17):5861-7 - PubMed
  26. Mol Aspects Med. 2009 Feb-Apr;30(1-2):29-41 - PubMed
  27. J Bacteriol. 1993 Sep;175(18):6038-40 - PubMed
  28. Biochemistry. 1993 Jun 22;32(24):6302-6 - PubMed
  29. Nat Biotechnol. 1999 Jul;17(7):691-5 - PubMed

Publication Types