Display options
Share it on

Curr Opin Colloid Interface Sci. 2011 Dec;16(6):551-556. doi: 10.1016/j.cocis.2011.04.010.

Evidence for water structuring forces between surfaces.

Current opinion in colloid & interface science

Christopher Stanley, Donald C Rau

Affiliations

  1. Neutron Scattering Science Division, Oak Ridge National Laboratory, PO Box 2008 MSC 6473, Oak Ridge, TN 37831.

PMID: 22125414 PMCID: PMC3223916 DOI: 10.1016/j.cocis.2011.04.010

Abstract

Structured water on apposing surfaces can generate significant energies due to reorganization and displacement of water as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate common features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

References

  1. Phys Rev Lett. 2003 Feb 14;90(6):066103 - PubMed
  2. Biophys J. 2008 Jun;94(12):4775-82 - PubMed
  3. J Phys Chem B. 2009 Oct 8;113(40):13222-8 - PubMed
  4. Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15065-8 - PubMed
  5. Phys Rev Lett. 2001 Oct 8;87(15):156103 - PubMed
  6. Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20749-52 - PubMed
  7. Phys Rev Lett. 2006 May 5;96(17):177803 - PubMed
  8. J Chem Phys. 2006 Jul 14;125(2):24901 - PubMed
  9. Chem Rev. 2006 Apr;106(4):1478-510 - PubMed
  10. Methods Mol Biol. 2007;400:405-19 - PubMed
  11. Phys Rev Lett. 1993 Jun 7;70(23):3623-3626 - PubMed
  12. Biophys J. 2005 Sep;89(3):1932-40 - PubMed
  13. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15214-8 - PubMed
  14. Curr Opin Struct Biol. 2000 Aug;10(4):481-5 - PubMed
  15. Q Rev Biophys. 1985 Nov;18(4):323-422 - PubMed
  16. Biophys J. 1992 Jan;61(1):260-71 - PubMed
  17. J Am Chem Soc. 2007 Nov 14;129(45):13847-56 - PubMed
  18. Biochemistry. 2008 Jun 24;47(25):6711-8 - PubMed
  19. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):481-6 - PubMed
  20. Biochemistry. 1988 Oct 4;27(20):7711-22 - PubMed
  21. J Am Chem Soc. 2008 Apr 30;130(17):5773-9 - PubMed
  22. J Am Chem Soc. 2008 Mar 5;130(9):2798-805 - PubMed
  23. Nature. 1996 Jan 18;379(6562):219-25 - PubMed
  24. J Am Chem Soc. 2005 Feb 23;127(7):2184-90 - PubMed
  25. Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13997-4002 - PubMed
  26. J Phys Chem B. 2010 Jun 24;114(24):8081-8 - PubMed
  27. Biophys J. 2006 Aug 1;91(3):912-20 - PubMed
  28. Biophys J. 1992 Jan;61(1):246-59 - PubMed
  29. J Phys Chem B. 2009 Dec 17;113(50):16169-77 - PubMed
  30. Phys Rev A. 1991 Oct 15;44(8):5272-5278 - PubMed
  31. Adv Protein Chem. 1998;51:355-432 - PubMed
  32. Chem Rev. 2006 Apr;106(4):1527-39 - PubMed
  33. Methods Enzymol. 1986;127:400-16 - PubMed
  34. Science. 1990 Sep 14;249(4974):1278-81 - PubMed
  35. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9826-30 - PubMed
  36. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12301-6 - PubMed
  37. J Phys Chem B. 2007 May 17;111(19):5264-76 - PubMed
  38. Chem Rev. 2008 Jan;108(1):74-108 - PubMed
  39. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750-4 - PubMed
  40. Phys Rev Lett. 1993 Sep 27;71(13):2050-2053 - PubMed
  41. J Phys Chem B. 2005 May 12;109(18):9111-8 - PubMed
  42. Annu Rev Phys Chem. 1993;44:369-95 - PubMed
  43. Biophys Chem. 2003 Sep;105(2-3):183-93 - PubMed
  44. Biophys J. 2010 Oct 20;99(8):2608-15 - PubMed
  45. Science. 2003 Jul 18;301(5631):347-9 - PubMed
  46. J Phys Chem B. 2008 May 1;112(17):5279-90 - PubMed
  47. Biochemistry. 2004 Jun 29;43(25):8272-80 - PubMed
  48. Annu Rev Phys Chem. 2008;59:713-40 - PubMed

Publication Types

Grant support