Display options
Share it on

Calcium Bind Proteins. 2006;1(2):108-114.

Effects of Phosphorylation in Chlamydomonas Centrin Ser 167.

Calcium binding proteins

Zuleika Sanoguet, Muriel Campbell, Sindia Ramos, Christina Seda, Luis Pérez Moreno, Belinda Pastrana-Rios

Affiliations

  1. Department of Chemistry; University of Puerto Rico; Mayagüez Campus; Mayagüez, USA.

PMID: 22162668 PMCID: PMC3232031

Abstract

Centrin is a conserved calcium binding protein belonging to the EF-hand superfamily with two independent structural domains. This protein is found to be phosphorylated near the carboxyl terminal end. Our goal was to perform a novel comparative study of phosphorylated and unphosphorylated centrin by Fourier transform infrared (FT-IR) spectroscopy, two-dimensional correlation spectroscopy (2D-COS) analysis and differential scanning calorimetry (DSC). To achieve this goal, we have bacterially expressed, isolated, purified and phosphorylated centrin. We verified the extent of phosphorylation to be >97% for centrin by MALDI MS analysis and determined the absence of aggregated protein. The thermal denaturation temperature and ΔCp were determined to be T(m) = 112.1 °C (ΔCp = 7.8 Kcal/mole/ΔC) and T(m) = 111.0°C (ΔCp = 5.0 Kcal/mole/°C) for holo-centrin and phosphorylated centrin, respectively. We have also described the molecular dynamics leading up to the thermal denaturation of the protein: for holo-centrin the vibrational modes associated with the calcium binding sites aspartates and glutamates, loops then the arginines, followed by the structured backbone vibrational modes the α-helix at 1635 cm(-1) then β-sheet and finally the more exposed α-helix at 1650 cm(-1); while for phosphorylated centrin aspartate, glutamate and arginine, followed by the backbone associated vibrational modes α-helix (1650 cm(-1)), loop then the β-sheet (1633 cm(-1)) and finally the α-helix (1637 cm(-1)). Therefore, the effect on domain stability due to phosphorylation at Ser(167) was observed in the loops as well as the α-helix at 1650 cm(-1).

References

  1. J Biol Chem. 1996 Sep 13;271(37):22453-61 - PubMed
  2. J Biol Chem. 2001 Jun 8;276(23):20774-80 - PubMed
  3. Prog Biophys Mol Biol. 1993;59(1):23-56 - PubMed
  4. FEBS Lett. 2000 Apr 28;472(2-3):208-12 - PubMed
  5. J Cell Biol. 1987 Oct;105(4):1799-805 - PubMed
  6. J Cell Sci. 1990 Jul;96 ( Pt 3):395-402 - PubMed
  7. J Cell Biol. 2002 Dec 23;159(6):945-56 - PubMed
  8. Biochemistry. 2005 Feb 22;44(7):2409-18 - PubMed
  9. Curr Biol. 2004 Jan 6;14(1):R27-9 - PubMed
  10. J Cell Sci. 1994 Jan;107 ( Pt 1):9-16 - PubMed
  11. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1420-5 - PubMed
  12. Biochem Biophys Res Commun. 2006 Mar 31;342(1):342-8 - PubMed
  13. Curr Opin Cell Biol. 1995 Feb;7(1):39-45 - PubMed
  14. Biochemistry. 2003 Feb 18;42(6):1439-50 - PubMed
  15. J Biol Chem. 1994 Jun 3;269(22):15795-802 - PubMed
  16. Biochemistry. 2002 Jun 4;41(22):6911-9 - PubMed
  17. Annu Rev Biochem. 1994;63:639-74 - PubMed
  18. Biopolymers. 1975 Apr;14(4):679-94 - PubMed
  19. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13153-8 - PubMed
  20. J Mol Biol. 2003 Jul 11;330(3):473-84 - PubMed
  21. Biochemistry. 2001 Aug 7;40(31):9074-81 - PubMed
  22. J Biol Chem. 2002 Aug 9;277(32):28564-71 - PubMed
  23. J Cell Biol. 2003 Sep 29;162(7):1211-21 - PubMed
  24. Nature. 1989 Jul 13;340(6229):99-100 - PubMed

Publication Types

Grant support