Display options
Share it on

AMB Express. 2012 Mar 29;2:20. doi: 10.1186/2191-0855-2-20.

Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes.

AMB Express

Res Nwachukwu, A Shahbazi, L Wang, S Ibrahim, M Worku, K Schimmel

Affiliations

  1. Biological Engineering Program, North Carolina A & T State University, Greensboro, NC, USA. [email protected].

PMID: 22455837 PMCID: PMC3350409 DOI: 10.1186/2191-0855-2-20

Abstract

The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC.In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production.

References

  1. Metab Eng. 2008 Nov;10(6):340-51 - PubMed
  2. Biotechnol Adv. 2009 Jan-Feb;27(1):30-9 - PubMed
  3. Appl Microbiol Biotechnol. 2004 Dec;66(2):131-42 - PubMed
  4. Biotechnol Bioeng. 2006 Aug 5;94(5):821-9 - PubMed
  5. Curr Opin Biotechnol. 2007 Jun;18(3):213-9 - PubMed
  6. Res Microbiol. 1995 May;146(4):279-90 - PubMed
  7. J Appl Microbiol. 1997 Aug;83(2):166-74 - PubMed
  8. Biotechnol Bioeng. 2007 Oct 1;98(2):340-8 - PubMed
  9. Annu Rev Microbiol. 1976;30:535-78 - PubMed
  10. J Biosci Bioeng. 2005 Sep;100(3):260-5 - PubMed
  11. Metab Eng. 2008 Sep;10(5):234-45 - PubMed
  12. Adv Biochem Eng Biotechnol. 2007;105:175-204 - PubMed

Publication Types