Display options
Share it on

Front Microbiol. 2012 Jan 18;3:5. doi: 10.3389/fmicb.2012.00005. eCollection 2012.

Abundance, diversity, and depth distribution of planctomycetes in acidic northern wetlands.

Frontiers in microbiology

Anastasia O Ivanova, Svetlana N Dedysh

Affiliations

  1. Winogradsky Institute of Microbiology, Russian Academy of Sciences Moscow, Russia.

PMID: 22279446 PMCID: PMC3260447 DOI: 10.3389/fmicb.2012.00005

Abstract

Members of the bacterial phylum Planctomycetes inhabit various aquatic and terrestrial environments. In this study, fluorescence in situ hybridization (FISH) was applied to assess the abundance and depth distribution of these bacteria in nine different acidic wetlands of Northern Russia. Planctomycetes were most abundant in the oxic part of the wetland profiles. The respective cell numbers were in the range 1.1-6.7 × 10(7) cells g(-1) of wet peat, comprising 2-14% of total bacterial cells, and displaying linear correlation to the peat water pH. Most peatland sites showed a sharp decline of planctomycete abundance with depth, while in two particular sites this decline was followed by a second population maximum in an anoxic part of the bog profile. Oxic peat layers were dominated by representatives of the Isosphaera-Singulisphaera group, while anoxic peat was inhabited mostly by Zavarzinella- and Pirellula-like planctomycetes. Phylogenetically related bacteria of the candidate division OP3 were detected in both oxic and anoxic peat layers with cell densities of 0.6-4.6 × 10(6) cells g(-1) of wet peat.

Keywords: FISH; Planctomycetes; acidic northern wetlands; candidate division OP3; depth distribution

References

  1. Int J Syst Evol Microbiol. 2007 Nov;57(Pt 11):2680-2687 - PubMed
  2. Int J Syst Evol Microbiol. 2009 Feb;59(Pt 2):357-64 - PubMed
  3. Bioinformatics. 2004 Sep 22;20(14):2317-9 - PubMed
  4. Syst Appl Microbiol. 1999 Sep;22(3):434-44 - PubMed
  5. Appl Environ Microbiol. 2007 Aug;73(15):4707-16 - PubMed
  6. Appl Environ Microbiol. 2011 Jul;77(14):5009-17 - PubMed
  7. Appl Environ Microbiol. 2006 Mar;72(3):2110-7 - PubMed
  8. Mikrobiologiia. 2006 Nov-Dec;75(6):823-7 - PubMed
  9. Appl Environ Microbiol. 2001 Feb;67(2):623-31 - PubMed
  10. Microbiology (Reading). 1995 Jul;141 ( Pt 7):1493-506 - PubMed
  11. Mikrobiologiia. 2007 Sep-Oct;76(5):702-10 - PubMed
  12. Nucleic Acids Res. 2004 Feb 25;32(4):1363-71 - PubMed
  13. Microb Ecol. 2011 Apr;61(3):529-42 - PubMed
  14. Int J Syst Evol Microbiol. 2001 Jan;51(Pt 1):195-202 - PubMed
  15. Appl Environ Microbiol. 1996 Dec;62(12):4504-13 - PubMed
  16. Appl Environ Microbiol. 2001 Oct;67(10):4850-7 - PubMed
  17. Int J Syst Evol Microbiol. 2012 Jan;62(Pt 1):118-123 - PubMed
  18. Appl Environ Microbiol. 2006 Apr;72(4):3079-83 - PubMed
  19. Mikrobiologiia. 2006 May-Jun;75(3):389-96 - PubMed
  20. Biochem Soc Trans. 2005 Feb;33(Pt 1):119-23 - PubMed
  21. Environ Microbiol. 2006 Aug;8(8):1361-70 - PubMed
  22. J Bacteriol. 1998 Jan;180(2):366-76 - PubMed
  23. Microb Ecol. 2012 Jan;63(1):103-15 - PubMed
  24. Microbiology (Reading). 1998 Dec;144 ( Pt 12):3257-3266 - PubMed
  25. Int J Syst Evol Microbiol. 2008 May;58(Pt 5):1186-93 - PubMed
  26. Appl Environ Microbiol. 2003 Dec;69(12):7354-63 - PubMed
  27. Environ Microbiol. 2001 Sep;3(9):551-60 - PubMed
  28. Environ Microbiol. 2010 May;12(5):1218-29 - PubMed
  29. Microb Ecol. 2006 Jul;52(1):34-44 - PubMed
  30. Nat Rev Microbiol. 2011 Jun;9(6):403-13 - PubMed

Publication Types