Display options
Share it on

Front Genet. 2011 Nov 02;2:72. doi: 10.3389/fgene.2011.00072. eCollection 2011.

Epitope-based immunoinformatics and molecular docking studies of nucleocapsid protein and ovarian tumor domain of crimean-congo hemorrhagic Fever virus.

Frontiers in genetics

Pappu Srinivasan, Sivakumar Prasanth Kumar, Muthusamy Karthikeyan, Jeyaram Jeyakanthan, Yogesh T Jasrai, Himanshu A Pandya, Rakesh M Rawal, Saumya K Patel

Affiliations

  1. Department of Bioinformatics, Alagappa University, Karaikudi Tamil Nadu, India.

PMID: 22303367 PMCID: PMC3268625 DOI: 10.3389/fgene.2011.00072

Abstract

Crimean-Congo hemorrhagic fever virus (CCHFV), the fatal human pathogen is transmitted to humans by tick bite, or exposure to infected blood or tissues of infected livestock. The CCHFV genome consists of three RNA segments namely, S, M, and L. The unusual large viral L protein has an ovarian tumor (OTU) protease domain located in the N terminus. It is likely that the protein may be autoproteolytically cleaved to generate the active virus L polymerase with additional functions. Identification of the epitope regions of the virus is important for the diagnosis, phylogeny studies, and drug discovery. Early diagnosis and treatment of CCHF infection is critical to the survival of patients and the control of the disease. In this study, we undertook different in silico approaches using molecular docking and immunoinformatics tools to predict epitopes which can be helpful for vaccine designing. Small molecule ligands against OTU domain and protein-protein interaction between a viral and a host protein have been studied using docking tools.

Keywords: CCHFV; OTU domain; immunoinformatics; molecular docking; polymerase

References

  1. Antiviral Res. 2004 Dec;64(3):145-60 - PubMed
  2. Immunome Res. 2006 Apr 24;2:2 - PubMed
  3. Nucleic Acids Res. 2006;34(21):6195-204 - PubMed
  4. J Virol. 2010 Jan;84(1):216-26 - PubMed
  5. J Mol Biol. 1963 Jul;7:95-9 - PubMed
  6. J Mol Biol. 1982 May 5;157(1):105-32 - PubMed
  7. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2222-7 - PubMed
  8. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D34-8 - PubMed
  9. Nature. 2010 May 27;465(7297):502-6 - PubMed
  10. J Virol. 1985 Sep;55(3):836-9 - PubMed
  11. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W52-6 - PubMed
  12. Arch Biochem Biophys. 2000 Sep 15;381(2):235-40 - PubMed
  13. FEBS Lett. 1990 Dec 10;276(1-2):172-4 - PubMed
  14. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W363-7 - PubMed
  15. J Virol. 2004 Apr;78(8):4323-9 - PubMed
  16. Bioinformatics. 2007 Nov 1;23(21):2947-8 - PubMed
  17. Cell Host Microbe. 2007 Dec 13;2(6):404-16 - PubMed
  18. Proteins. 2003 Feb 15;50(3):437-50 - PubMed
  19. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W310-4 - PubMed
  20. J Gen Virol. 1981 Jul;55(Pt 1):165-78 - PubMed
  21. Nucleic Acids Res. 2003 Jul 1;31(13):3381-5 - PubMed
  22. Proteins. 2010 Nov 15;78(15):3124-30 - PubMed
  23. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33 - PubMed
  24. J Mol Biol. 1977 May 25;112(3):535-42 - PubMed
  25. Bioinformatics. 2003 Mar 22;19(5):665-6 - PubMed
  26. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W116-8 - PubMed
  27. Jpn J Infect Dis. 2005 Oct;58(5):313-5 - PubMed
  28. Traffic. 2002 Oct;3(10):710-7 - PubMed
  29. Biochemistry. 1986 Sep 23;25(19):5425-32 - PubMed
  30. Cell Host Microbe. 2007 Dec 13;2(6):367-9 - PubMed

Publication Types