Display options
Share it on

Eur J Clin Microbiol Infect Dis. 2012 Jan 31; doi: 10.1007/s10096-011-1541-2. Epub 2012 Jan 31.

Serum capacity to neutralize superantigens does not affect the outcome of Staphylococcus aureus bacteremia.

European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology

J Yi, J S Park, K-H Hong, S-H Lee, E-C Kim

Affiliations

  1. Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, Korea.

PMID: 22290348 DOI: 10.1007/s10096-011-1541-2

Abstract

Staphylococcal superantigens (SAg) could play an important role in sepsis by activating numerous T cells. We investigated whether serum capacity to neutralize SAgs can be a prognostic factor in Staphylococcus aureus bacteremia (SAB). In a university hospital, 105 consecutive SAB patients were enrolled during a 12-month period. The earliest serum samples prior to SAB onset were stored for a later T cell proliferation assay. Multiplex polymerase chain reaction (PCR) for 19 SAg genes was performed for S. aureus blood isolates. To determine the serum capacity to neutralize SAgs, T cell proliferation by the culture supernatant of each S. aureus isolate was measured in the presence and absence of the corresponding patient's serum. Twenty-six (24.8%) patients died within 4 weeks from SAB onset. Vascular catheter-related infection was associated with survival for ≥4 weeks. Unknown primary focus, Simplified Acute Physiology Score-II (SAPS-II), and specific SAg genes (tst, sec, sel, or sep) were associated with the 4-week mortality. No variables related to T cell proliferation assay showed statistical significance. In the multivariate analysis, SAPS-II ≥33 and tst were independently associated with the 4-week mortality. Serum capacity to neutralize SAg does not significantly affect SAB outcome. SAPS-II ≥33 and tst are independent predictors of the 4-week mortality.

References

  1. Arch Intern Med. 1998 Jan 26;158(2):182-9 - PubMed
  2. Int J Food Microbiol. 2007 Jun 10;117(1):99-105 - PubMed
  3. Clin Microbiol Infect. 2007 Nov;13(11):1131-3 - PubMed
  4. Clin Infect Dis. 2003 Aug 1;37(3):333-40 - PubMed
  5. Lancet Infect Dis. 2009 May;9(5):281-90 - PubMed
  6. Crit Care Med. 2003 Apr;31(4):1250-6 - PubMed
  7. J Hosp Infect. 2006 Jul;63(3):330-6 - PubMed
  8. Microbiol Immunol. 2004;48(11):899-903 - PubMed
  9. Infect Control Hosp Epidemiol. 1992 Oct;13(10):606-8 - PubMed
  10. Clin Microbiol Infect. 2008 Jun;14(6):625-6 - PubMed
  11. N Engl J Med. 2003 Apr 17;348(16):1546-54 - PubMed
  12. J Immunol. 2008 Oct 1;181(7):5054-61 - PubMed
  13. Clin Infect Dis. 2000 Feb;30(2):368-73 - PubMed
  14. Immunol Rev. 2008 Oct;225:226-43 - PubMed
  15. Food Microbiol. 2009 Dec;26(8):896-904 - PubMed
  16. J Antimicrob Chemother. 1990 Apr;25 Suppl C:41-58 - PubMed
  17. J Clin Microbiol. 2007 Aug;45(8):2669-80 - PubMed
  18. Lancet Infect Dis. 2002 Mar;2(3):156-62 - PubMed
  19. Clin Infect Dis. 2005 Sep 15;41(6):771-7 - PubMed
  20. Clin Infect Dis. 2000 Nov;31(5):1170-4 - PubMed
  21. Int J Microbiol. 2010;2010:654858 - PubMed
  22. Infect Immun. 2004 Jul;72(7):4061-71 - PubMed
  23. JAMA. 1993 Dec 22-29;270(24):2957-63 - PubMed
  24. J Infect Dis. 1999 Oct;180(4):1370-3 - PubMed
  25. Arch Immunol Ther Exp (Warsz). 2005 Jan-Feb;53(1):13-27 - PubMed
  26. J Infect Dis. 2006 May 1;193(9):1275-8 - PubMed
  27. Lancet. 2004 Aug 21-27;364(9435):703-5 - PubMed
  28. Clin Infect Dis. 2005 Mar 1;40(5):695-703 - PubMed
  29. Infect Immun. 2008 Nov;76(11):4999-5005 - PubMed
  30. Clin Infect Dis. 2003 Sep 15;37(6):794-9 - PubMed

Publication Types