Display options
Share it on

Front Psychiatry. 2012 Jan 11;2:83. doi: 10.3389/fpsyt.2011.00083. eCollection 2011.

Resting state functional connectivity correlates of inhibitory control in children with attention-deficit/hyperactivity disorder.

Frontiers in psychiatry

Maarten Mennes, Natan Vega Potler, Clare Kelly, Adriana Di Martino, F Xavier Castellanos, Michael P Milham

Affiliations

  1. Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, NYU Langone School of Medicine, NYU Child Study Center New York, NY, USA.

PMID: 22470352 PMCID: PMC3261661 DOI: 10.3389/fpsyt.2011.00083

Abstract

Motor inhibition is among the most commonly studied executive functions in attention-deficit/hyperactivity disorder (ADHD). Imaging studies using probes of motor inhibition such as the stop signal task (SST) consistently demonstrate ADHD-related dysfunction within a right-hemisphere fronto-striatal network that includes inferior frontal gyrus and pre-supplementary motor area. Beyond findings of focal hypo- or hyper-function, emerging models of ADHD psychopathology highlight disease-related changes in functional interactions between network components. Resting state fMRI (R-fMRI) approaches have emerged as powerful tools for mapping such interactions (i.e., resting state functional connectivity, RSFC), and for relating behavioral and diagnostic variables to network properties. We used R-fMRI data collected from 17 typically developing controls (TDC) and 17 age-matched children with ADHD (aged 8-13 years) to identify neural correlates of SST performance measured outside the scanner. We examined two related inhibition indices: stop signal reaction time (SSRT), indexing inhibitory speed, and stop signal delay (SSD), indexing inhibitory success. Using 11 fronto-striatal seed regions-of-interest, we queried the brain for relationships between RSFC and each performance index, as well as for interactions with diagnostic status. Both SSRT and SSD exhibited connectivity-behavior relationships independent of diagnosis. At the same time, we found differential connectivity-behavior relationships in children with ADHD relative to TDC. Our results demonstrate the utility of RSFC approaches for assessing brain/behavior relationships, and for identifying pathology-related differences in the contributions of neural circuits to cognition and behavior.

Keywords: ADHD; connectivity; fMRI; interaction; intrinsic architecture; rest; transition zones

References

  1. J Cogn Neurosci. 2007 Dec;19(12):2082-99 - PubMed
  2. Neuroimage. 2010 Aug 1;52(1):252-62 - PubMed
  3. Brain Inj. 2000 Oct;14(10):859-75 - PubMed
  4. Cereb Cortex. 2009 Mar;19(3):640-57 - PubMed
  5. Biol Psychiatry. 2005 Jun 1;57(11):1285-92 - PubMed
  6. Biol Psychiatry. 2008 Feb 1;63(3):332-7 - PubMed
  7. Neuroimage. 2008 Jan 1;39(1):527-37 - PubMed
  8. Neuroimage. 2012 Jan 2;59(1):431-8 - PubMed
  9. J Abnorm Child Psychol. 2007 Oct;35(5):745-58 - PubMed
  10. Brain. 2009 Jan;132(Pt 1):225-38 - PubMed
  11. PLoS One. 2010 Apr 27;5(4):e10232 - PubMed
  12. Nat Methods. 2011 Jun 26;8(8):665-70 - PubMed
  13. J Am Acad Child Adolesc Psychiatry. 1997 Jul;36(7):980-8 - PubMed
  14. Psychol Bull. 2001 Sep;127(5):571-98 - PubMed
  15. J Psychiatr Res. 2010 Jul;44(10):629-39 - PubMed
  16. Trends Cogn Sci. 2005 Jul;9(7):314-6 - PubMed
  17. Biol Psychiatry. 2011 Jun 15;69(12):1168-77 - PubMed
  18. Biol Psychiatry. 2005 Jun 1;57(11):1416-23 - PubMed
  19. J Abnorm Child Psychol. 2008 Oct;36(7):989-98 - PubMed
  20. Neuroimage. 2010 May 1;50(4):1690-701 - PubMed
  21. Biol Psychiatry. 2007 Nov 1;62(9):999-1006 - PubMed
  22. Am J Psychiatry. 1999 Jun;156(6):891-6 - PubMed
  23. Biol Psychiatry. 2010 Apr 1;67(7):632-40 - PubMed
  24. Biol Psychiatry. 2005 Jun 1;57(11):1224-30 - PubMed
  25. Biol Psychiatry. 2011 May 1;69(9):847-56 - PubMed
  26. Biol Psychiatry. 2012 Mar 1;71(5):434-42 - PubMed
  27. Neurosci Biobehav Rev. 2006;30(8):1078-86 - PubMed
  28. Trends Cogn Sci. 2006 Mar;10(3):117-23 - PubMed
  29. J Abnorm Child Psychol. 1999 Oct;27(5):393-402 - PubMed
  30. Med Image Anal. 2001 Jun;5(2):143-56 - PubMed
  31. Biol Psychiatry. 2010 Dec 15;68(12):1084-91 - PubMed
  32. Cereb Cortex. 2012 Aug;22(8):1862-75 - PubMed
  33. J Exp Psychol Hum Percept Perform. 1984 Apr;10(2):276-91 - PubMed
  34. J Abnorm Psychol. 2005 May;114(2):216-22 - PubMed
  35. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 - PubMed
  36. J Am Acad Child Adolesc Psychiatry. 2011 Jul;50(7):705-715.e3 - PubMed
  37. J Child Psychol Psychiatry. 2001 Feb;42(2):199-210 - PubMed
  38. Neuroimage. 2010 Sep;52(3):1059-69 - PubMed
  39. Am J Psychiatry. 2011 Feb;168(2):143-51 - PubMed
  40. Neurosci Lett. 2006 May 29;400(1-2):39-43 - PubMed
  41. Neuroimage. 2002 Oct;17(2):825-41 - PubMed
  42. Hum Brain Mapp. 2005 Jul;25(3):328-35 - PubMed
  43. Neuroimage. 2010 Oct 1;52(4):1621-32 - PubMed
  44. J Abnorm Child Psychol. 1998 Aug;26(4):257-68 - PubMed
  45. J Cogn Neurosci. 2008 Mar;20(3):478-93 - PubMed
  46. Science. 2003 Nov 14;302(5648):1181-5 - PubMed
  47. PLoS Comput Biol. 2009 May;5(5):e1000381 - PubMed
  48. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32 - PubMed
  49. J Child Psychol Psychiatry. 2006 Oct;47(10):1051-62 - PubMed
  50. Front Syst Neurosci. 2010 Jun 17;4:19 - PubMed
  51. Neuroimage. 2012 Feb 1;59(3):2142-54 - PubMed

Publication Types

Grant support