Display options
Share it on

ISRN Pharm. 2012;2012:407154. doi: 10.5402/2012/407154. Epub 2012 Feb 07.

Modulating Anti-MicroRNA-21 Activity and Specificity Using Oligonucleotide Derivatives and Length Optimization.

ISRN pharmaceutics

Andrés Muñoz-Alarcón, Peter Guterstam, Cristian Romero, Mark A Behlke, Kim A Lennox, Jesper Wengel, Samir El Andaloussi, Ulo Langel

Affiliations

  1. Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 21A, 106 92 Stockholm, Sweden.

PMID: 22474606 PMCID: PMC3302052 DOI: 10.5402/2012/407154

Abstract

MicroRNAs are short, endogenous RNAs that direct posttranscriptional regulation of gene expression vital for many developmental and cellular functions. Implicated in the pathogenesis of several human diseases, this group of RNAs provides interesting targets for therapeutic intervention. Anti-microRNA oligonucleotides constitute a class of synthetic antisense oligonucleotides used to interfere with microRNAs. In this study, we investigate the effects of chemical modifications and truncations on activity and specificity of anti-microRNA oligonucleotides targeting microRNA-21. We observed an increased activity but reduced specificity when incorporating locked nucleic acid monomers, whereas the opposite was observed when introducing unlocked nucleic acid monomers. Our data suggest that phosphorothioate anti-microRNA oligonucleotides yield a greater activity than their phosphodiester counterparts and that a moderate truncation of the anti-microRNA oligonucleotide improves specificity without significantly losing activity. These results provide useful insights for design of anti-microRNA oligonucleotides to achieve both high activity as well as efficient mismatch discrimination.

References

  1. Bioorg Med Chem. 2009 Aug 1;17(15):5420-5 - PubMed
  2. Curr Opin Drug Discov Devel. 2004 Mar;7(2):188-94 - PubMed
  3. Oligonucleotides. 2006 Spring;16(1):26-42 - PubMed
  4. Nature. 2001 May 24;411(6836):494-8 - PubMed
  5. Nat Rev Cancer. 2006 Apr;6(4):259-69 - PubMed
  6. Trends Cell Biol. 1992 May;2(5):139-44 - PubMed
  7. J Biol Chem. 2009 Oct 23;284(43):29514-25 - PubMed
  8. Nucleic Acids Res. 1997 Nov 15;25(22):4429-43 - PubMed
  9. Science. 2010 Jan 8;327(5962):198-201 - PubMed
  10. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9742-7 - PubMed
  11. Cell Metab. 2006 Feb;3(2):87-98 - PubMed
  12. Nat Rev Cancer. 2006 Nov;6(11):857-66 - PubMed
  13. Curr Med Chem. 2001 Aug;8(10):1157-79 - PubMed
  14. Eur J Biochem. 2003 Apr;270(8):1628-44 - PubMed
  15. Nucleic Acids Res. 2009 May;37(8):2584-95 - PubMed
  16. Nature. 2005 Dec 1;438(7068):685-9 - PubMed
  17. Antisense Res Dev. 1993 Spring;3(1):53-66 - PubMed
  18. Oncogene. 2007 Apr 26;26(19):2799-803 - PubMed
  19. Pharm Res. 2010 Sep;27(9):1788-99 - PubMed
  20. PLoS Biol. 2004 Apr;2(4):E98 - PubMed
  21. Biochemistry. 2004 Oct 26;43(42):13233-41 - PubMed
  22. Oncogene. 2006 Oct 9;25(46):6188-96 - PubMed
  23. Nucleic Acids Res. 1996 Aug 1;24(15):2936-41 - PubMed
  24. Biochem J. 2008 Jun 1;412(2):307-13 - PubMed
  25. Gastroenterology. 2007 Aug;133(2):647-58 - PubMed
  26. Nature. 1998 Feb 19;391(6669):806-11 - PubMed
  27. Curr Opin Mol Ther. 2001 Jun;3(3):239-43 - PubMed
  28. Nucleic Acids Res. 2007;35(2):687-700 - PubMed
  29. Cancer Res. 2005 Jul 15;65(14):6029-33 - PubMed
  30. J Biol Chem. 1994 Oct 28;269(43):26801-5 - PubMed
  31. J Clin Oncol. 2006 Oct 10;24(29):4677-84 - PubMed
  32. Nature. 2008 Apr 17;452(7189):896-9 - PubMed

Publication Types