Display options
Share it on

Front Comput Neurosci. 2012 Jan 30;6:3. doi: 10.3389/fncom.2012.00003. eCollection 2012.

Mitral cell spike synchrony modulated by dendrodendritic synapse location.

Frontiers in computational neuroscience

Thomas S McTavish, Michele Migliore, Gordon M Shepherd, Michael L Hines

Affiliations

  1. Department of Neurobiology, School of Medicine, Yale University, New Haven CT, USA.

PMID: 22319487 PMCID: PMC3268349 DOI: 10.3389/fncom.2012.00003

Abstract

On their long lateral dendrites, mitral cells of the olfactory bulb form dendrodendritic synapses with large populations of granule cell interneurons. The mitral-granule cell microcircuit operating through these reciprocal synapses has been implicated in inducing synchrony between mitral cells. However, the specific mechanisms of mitral cell synchrony operating through this microcircuit are largely unknown and are complicated by the finding that distal inhibition on the lateral dendrites does not modulate mitral cell spikes. In order to gain insight into how this circuit synchronizes mitral cells within its spatial constraints, we built on a reduced circuit model of biophysically realistic multi-compartment mitral and granule cells to explore systematically the roles of dendrodendritic synapse location and mitral cell separation on synchrony. The simulations showed that mitral cells can synchronize when separated at arbitrary distances through a shared set of granule cells, but synchrony is optimally attained when shared granule cells form two balanced subsets, each subset clustered near to a soma of the mitral cell pairs. Another constraint for synchrony is that the input magnitude must be balanced. When adjusting the input magnitude driving a particular mitral cell relative to another, the mitral-granule cell circuit served to normalize spike rates of the mitral cells while inducing a phase shift or delay in the more weakly driven cell. This shift in phase is absent when the granule cells are removed from the circuit. Our results indicate that the specific distribution of dendrodendritic synaptic clusters is critical for optimal synchronization of mitral cell spikes in response to their odor input.

Keywords: backpropagation; dendritic processing; mitral cells; olfaction; synchrony

References

  1. J Comput Neurosci. 2010 Feb;28(1):29-45 - PubMed
  2. Exp Neurol. 1966 Jan;14(1):44-56 - PubMed
  3. Neuron. 1998 Apr;20(4):749-61 - PubMed
  4. J Comp Neurol. 1983 Jun 20;217(2):227-37 - PubMed
  5. Trends Neurosci. 2010 Mar;33(3):130-9 - PubMed
  6. J Neurosci. 2008 Aug 27;28(35):8851-9 - PubMed
  7. Nature. 2010 May 6;465(7294):47-52 - PubMed
  8. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5843-8 - PubMed
  9. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3371-5 - PubMed
  10. J Neurophysiol. 2003 Sep;90(3):1921-35 - PubMed
  11. Nat Rev Neurosci. 2002 Nov;3(11):884-95 - PubMed
  12. Chem Senses. 2005 Nov;30(9):801-13 - PubMed
  13. Nat Neurosci. 2004 Aug;7(8):862-71 - PubMed
  14. Front Integr Neurosci. 2010 Sep 20;4:122 - PubMed
  15. Nat Rev Neurosci. 2001 Oct;2(10):704-16 - PubMed
  16. Science. 1999 Oct 22;286(5440):711-5 - PubMed
  17. J Neurosci. 2009 Oct 28;29(43):13454-64 - PubMed
  18. Physiol Rev. 2010 Jul;90(3):1195-268 - PubMed
  19. Nat Rev Neurosci. 2007 Jan;8(1):45-56 - PubMed
  20. Neuron. 2005 Jun 2;46(5):761-72 - PubMed
  21. Nature. 1994 Jul 14;370(6485):140-3 - PubMed
  22. BMC Neurosci. 2006 Jan 24;7:7 - PubMed
  23. J Comput Neurosci. 2005 Mar-Apr;18(2):151-61 - PubMed
  24. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):319-24 - PubMed
  25. J Neurophysiol. 1968 Nov;31(6):884-915 - PubMed
  26. J Comput Neurosci. 1994 Dec;1(4):313-21 - PubMed
  27. Science. 2004 Jun 25;304(5679):1926-9 - PubMed
  28. J Neurophysiol. 1991 Sep;66(3):1059-79 - PubMed
  29. Neuron. 2000 Mar;25(3):625-33 - PubMed
  30. Neuron. 2011 Apr 14;70(1):82-94 - PubMed
  31. Neuron. 2006 Jan 19;49(2):271-83 - PubMed
  32. J Neurophysiol. 2009 Feb;101(2):1089-102 - PubMed
  33. J Neurosci. 2003 May 15;23(10):4108-16 - PubMed
  34. J Neurosci. 1998 Sep 1;18(17):6790-802 - PubMed
  35. Neuron. 2002 Mar 28;34(1):115-26 - PubMed
  36. Brain Res Rev. 2007 Oct;55(2):373-82 - PubMed
  37. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12592-7 - PubMed
  38. Front Neural Circuits. 2011 Apr 25;5:5 - PubMed
  39. J Neurophysiol. 1999 Oct;82(4):1786-92 - PubMed
  40. J Comput Neurosci. 2001 Mar-Apr;10(2):187-93 - PubMed
  41. Nature. 2003 Dec 11;426(6967):623-9 - PubMed
  42. J Neurophysiol. 2009 Feb;101(2):1073-88 - PubMed
  43. Physiol Behav. 2002 Dec;77(4-5):607-12 - PubMed
  44. Front Integr Neurosci. 2007 Dec 30;1:12 - PubMed
  45. J Neurophysiol. 2006 Apr;95(4):2678-91 - PubMed
  46. PLoS Comput Biol. 2010 Feb 19;6(2):e1000679 - PubMed
  47. Annu Rev Neurosci. 2001;24:263-97 - PubMed
  48. Nat Neurosci. 2002 Nov;5(11):1194-202 - PubMed
  49. J Neurophysiol. 2002 Jul;88(1):64-85 - PubMed
  50. J Comput Neurosci. 2004 Jul-Aug;17(1):7-11 - PubMed
  51. J Comput Neurosci. 2008 Apr;24(2):207-21 - PubMed
  52. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17980-5 - PubMed
  53. Neural Comput. 1997 Aug 15;9(6):1179-209 - PubMed
  54. Neuron. 2011 Mar 24;69(6):1176-87 - PubMed
  55. Nat Rev Neurosci. 2001 Aug;2(8):539-50 - PubMed
  56. J Neurosci. 2006 Apr 5;26(14):3646-55 - PubMed
  57. J Physiol. 1981 May;314:281-94 - PubMed
  58. Nat Neurosci. 2003 Jun;6(6):593-9 - PubMed
  59. Nat Neurosci. 2008 Jan;11(1):80-7 - PubMed

Publication Types

Grant support