Display options
Share it on

Front Neurol. 2012 Apr 03;3:42. doi: 10.3389/fneur.2012.00042. eCollection 2012.

The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control.

Frontiers in neurology

François M Lambert, Hans Straka

Affiliations

  1. Department of Physiology, University of Oslo Oslo, Norway.

PMID: 22518109 PMCID: PMC3324849 DOI: 10.3389/fneur.2012.00042

Abstract

Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the central nervous system (CNS) to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the CNS include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims toward a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of vestibular function.

Keywords: posture; proprioception; scoliosis; semicircular canals; skeletal deformation; spinal cord; utricle; vestibular

References

  1. Exp Brain Res. 2001 Mar;137(2):190-6 - PubMed
  2. J Neurophysiol. 2012 Jan;107(1):29-41 - PubMed
  3. Ann Otol Rhinol Laryngol Suppl. 1982 Sep-Oct;97:16-32 - PubMed
  4. Prog Neurobiol. 2000 Oct;62(3):313-25 - PubMed
  5. Exp Brain Res. 1974 Feb 28;19(4):394-405 - PubMed
  6. Brain Res. 1987 Nov 24;426(2):212-24 - PubMed
  7. Neuroreport. 1993 Sep;4(9):1071-4 - PubMed
  8. Laryngoscope. 1987 Oct;97(10):1219-32 - PubMed
  9. Neural Plast. 2005;12(2-3):109-18; discussion 263-72 - PubMed
  10. Acta Otolaryngol. 2001 Apr;121(3):355-63 - PubMed
  11. Exp Brain Res. 1984;55(3):574-8 - PubMed
  12. Prog Neurobiol. 2005 Aug;76(6):349-92 - PubMed
  13. Q Rev Biol. 1945 Dec;20:311-69 - PubMed
  14. J Physiol. 2008 Sep 15;586(18):4441-52 - PubMed
  15. J Physiol (Paris). 1963 Jul-Aug;55:SUPPL 7:1-95 - PubMed
  16. Brain Res. 1980 Aug 18;195(2):476-8 - PubMed
  17. Exp Brain Res. 1982;47(3):394-406 - PubMed
  18. Curr Opin Neurobiol. 2010 Dec;20(6):689-95 - PubMed
  19. Laryngoscope. 1986 May;96(5):484-93 - PubMed
  20. Exp Brain Res. 1998 Feb;118(3):331-40 - PubMed
  21. Acta Otolaryngol. 1997 Mar;117(2):244-9 - PubMed
  22. J Neurophysiol. 2008 Feb;99(2):853-65 - PubMed
  23. J Neurophysiol. 2003 Dec;90(6):3736-49 - PubMed
  24. Nature. 1977 Sep 29;269(5627):431-3 - PubMed
  25. Adv Neurol. 1997;73:297-309 - PubMed
  26. Bone. 2008 Nov;43(5):901-9 - PubMed
  27. Exp Brain Res. 2001 Apr;137(3-4):387-96 - PubMed
  28. Brain Res. 1986 Mar 26;369(1-2):48-64 - PubMed
  29. Exp Brain Res. 1979 Jul 2;36(2):311-28 - PubMed
  30. J Neurophysiol. 2001 Jun;85(6):2643-6 - PubMed
  31. Acta Otolaryngol Suppl. 1986;427:1-42 - PubMed
  32. Prog Brain Res. 2000;128:173-9 - PubMed
  33. Otolaryngol Head Neck Surg. 1998 Sep;119(3):244-54 - PubMed
  34. Exp Brain Res. 2000 Oct;134(3):398-401 - PubMed
  35. Curr Opin Neurol. 2000 Feb;13(1):27-30 - PubMed
  36. Prog Neurobiol. 1995 Jun;46(2-3):97-129 - PubMed
  37. Ann N Y Acad Sci. 2003 Oct;1004:50-60 - PubMed
  38. Curr Opin Otolaryngol Head Neck Surg. 2010 Oct;18(5):420-4 - PubMed
  39. J Neurophysiol. 2003 Jul;90(1):184-203 - PubMed
  40. Rev Oculomot Res. 1985;1:251-68 - PubMed
  41. J Neurosci. 1998 Feb 15;18(4):1449-64 - PubMed
  42. Int J Equilib Res. 1973 Jun;3(1):33-47 - PubMed
  43. Brain Res. 1971 Nov;34(2):366-9 - PubMed
  44. Otolaryngol Head Neck Surg. 1998 Jul;119(1):34-42 - PubMed
  45. Exp Brain Res. 1989;77(1):166-82 - PubMed
  46. J Vestib Res. 2009;19(5-6):171-82 - PubMed
  47. Prog Neurobiol. 1997 Feb;51(3):243-86 - PubMed
  48. Brain Res Brain Res Rev. 1989 Apr-Jun;14(2):155-80 - PubMed
  49. Exp Neurol. 1992 Jan;115(1):115-20 - PubMed
  50. J Neurosci. 2010 Mar 3;30(9):3310-25 - PubMed
  51. Rev Oculomot Res. 1985;1:269-77 - PubMed
  52. Brain Res. 1986 Jan 15;363(1):188-91 - PubMed
  53. J Comp Neurol. 1978 Dec 15;182(4):621-36 - PubMed
  54. J Vestib Res. 1996 Mar-Apr;6(2):105-19 - PubMed
  55. Pflugers Arch. 1976 Nov 5;366(2-3):143-6 - PubMed
  56. J Neurophysiol. 1995 Apr;73(4):1617-31 - PubMed
  57. Neuroscience. 2009 Jul 21;161(4):988-1007 - PubMed
  58. J Laryngol Otol. 1946 Mar;61(3):204-14 - PubMed
  59. Eur J Neurosci. 2007 Jan;25(1):47-58 - PubMed
  60. J Comp Physiol A. 1994 May;174(5):621-32 - PubMed
  61. Brain Res. 1997 Aug 8;765(1):1-6 - PubMed
  62. Synapse. 1987;1(1):102-23 - PubMed
  63. J Anat. 1995 Feb;186 ( Pt 1):55-74 - PubMed
  64. Exp Brain Res. 1976 Jun 30;25(4):369-90 - PubMed
  65. J Neurophysiol. 1966 Nov;29(6):996-1010 - PubMed
  66. J Vestib Res. 2009;19(5-6):201-7 - PubMed
  67. Exp Brain Res. 2002 Dec;147(3):374-86 - PubMed
  68. Brain Res. 1985 Jul 15;338(2):225-36 - PubMed
  69. Adv Otorhinolaryngol. 1999;55:82-110 - PubMed
  70. J Neurophysiol. 1989 Apr;61(4):688-701 - PubMed
  71. Prog Neurobiol. 2004 Jul;73(4):259-309 - PubMed
  72. J Neurophysiol. 2000 Jul;84(1):581-4 - PubMed
  73. Neuroscience. 1999;93(2):413-32 - PubMed
  74. Arch Ital Biol. 1993 Apr;131(2-3):173-90 - PubMed
  75. Prog Brain Res. 1972;37:177-90 - PubMed
  76. J Neurosci. 2009 Oct 7;29(40):12477-83 - PubMed
  77. Brain Res. 1980 Mar 3;185(1):125-37 - PubMed
  78. J Neurosci. 2007 Apr 18;27(16):4283-96 - PubMed
  79. J Neurophysiol. 2002 Nov;88(5):2287-301 - PubMed
  80. Auris Nasus Larynx. 2003 Dec;30(4):341-8 - PubMed
  81. Exp Brain Res. 1979 Jul 2;36(2):329-357 - PubMed
  82. Brain Res. 1982 Oct 28;250(1):168-72 - PubMed
  83. J Comp Neurol. 2001 Aug 13;437(1):42-55 - PubMed
  84. Prog Brain Res. 1988;76:403-9 - PubMed
  85. J Neurophysiol. 2004 Aug;92(2):845-61 - PubMed
  86. Prog Neurobiol. 1997 Dec;53(5):517-31 - PubMed
  87. J Neurophysiol. 2004 Sep;92(3):1668-84 - PubMed
  88. Exp Brain Res. 1988;72(1):129-34 - PubMed
  89. J Neurophysiol. 2003 Nov;90(5):3501-12 - PubMed
  90. J Neurophysiol. 2002 Jan;87(1):385-98 - PubMed
  91. Front Neurol. 2010 Nov 17;1:141 - PubMed
  92. Eur J Neurosci. 2002 Jun;15(11):1719-27 - PubMed

Publication Types