Display options
Share it on

Front Neurosci. 2012 Apr 09;6:44. doi: 10.3389/fnins.2012.00044. eCollection 2012.

Ethanol Activation of Protein Kinase A Regulates GABA(A) Receptor Subunit Expression in the Cerebral Cortex and Contributes to Ethanol-Induced Hypnosis.

Frontiers in neuroscience

Sandeep Kumar, Qinglu Ren, Jonathon H Beckley, Todd K O'Buckley, Eduardo D Gigante, Jessica L Santerre, David F Werner, A Leslie Morrow

Affiliations

  1. Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA.

PMID: 22509146 PMCID: PMC3321501 DOI: 10.3389/fnins.2012.00044

Abstract

Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking, and synaptic excitability. Both protein kinase C (PKC) and A (PKA) are involved in regulation of γ-aminobutyric acid type A (GABA(A)) receptors through phosphorylation. However, the role of PKA in regulating GABA(A) receptors (GABA(A)-R) following acute ethanol exposure is not known. The present study investigated the role of PKA in the effects of ethanol on GABA(A)-R α1 subunit expression in rat cerebral cortical P2 synaptosomal fractions. Additionally, GABA-related behaviors were examined. Rats were administered ethanol (2.0-3.5 g/kg) or saline and PKC, PKA, and GABA(A)-R α1 subunit levels were measured by western blot analysis. Ethanol (3.5 g/kg) transiently increased GABA(A)-R α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, lower ethanol doses (2.0 g/kg) had no effect on GABA(A)-R α1 subunit levels, although PKA type II regulatory subunits RIIα and RIIβ were increased at 10 and 60 min when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA(A)-R α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA(A)-R α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex (LORR) duration. This effect appears to be mediated in part by GABA(A)-R as increasing PKA activity also increased the duration of muscimol-induced LORR. Overall, these data suggest that PKA mediates ethanol-induced GABA(A)-R expression and contributes to behavioral effects of ethanol involving GABA(A)-R.

Keywords: GABAA receptors; PKA; PKC; ethanol; loss of righting reflex

References

  1. Mol Cell Neurosci. 2003 Jan;22(1):87-97 - PubMed
  2. J Neurophysiol. 2010 Feb;103(2):1007-19 - PubMed
  3. J Neuroendocrinol. 2011 Dec;23(12):1273-87 - PubMed
  4. J Neurosci. 2001 Jul 15;21(14):5297-303 - PubMed
  5. J Comp Neurol. 1995 Aug 14;359(1):154-94 - PubMed
  6. J Neurochem. 1997 Jul;69(1):126-30 - PubMed
  7. J Biol Chem. 1992 Jul 15;267(20):14470-6 - PubMed
  8. Alcohol Clin Exp Res. 2002 Mar;26(3):407-15 - PubMed
  9. Brain Res. 1992 Jul 17;586(1):157-61 - PubMed
  10. J Neurosci. 1999 Jan 15;19(2):674-83 - PubMed
  11. Neuropharmacology. 2009 Jan;56(1):141-8 - PubMed
  12. EMBO J. 2006 Sep 20;25(18):4381-9 - PubMed
  13. Anesth Analg. 2007 Jul;105(1):89-96 - PubMed
  14. J Neurochem. 2011 Feb;116(4):554-63 - PubMed
  15. J Neurochem. 1991 Aug;57(2):722-5 - PubMed
  16. J Biol Chem. 2000 Jul 7;275(27):20588-96 - PubMed
  17. Science. 1992 Jul 31;257(5070):661-5 - PubMed
  18. J Neurosci. 2000 May 15;20(10):RC75 - PubMed
  19. J Neurophysiol. 2000 Jun;83(6):3388-401 - PubMed
  20. Mol Pharmacol. 2003 Jan;63(1):53-64 - PubMed
  21. J Biol Chem. 1991 Dec 5;266(34):23428-32 - PubMed
  22. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10217-21 - PubMed
  23. J Biol Chem. 1994 Jan 21;269(3):2002-8 - PubMed
  24. J Neurochem. 2004 Feb;88(3):564-75 - PubMed
  25. J Neurophysiol. 1996 Oct;76(4):2626-34 - PubMed
  26. Neuropharmacology. 2001 Mar;40(3):424-32 - PubMed
  27. Neuroscience. 1993 Mar;53(1):131-8 - PubMed
  28. J Biol Chem. 2000 Dec 8;275(49):38856-62 - PubMed
  29. J Pharmacol Exp Ther. 2006 Dec;319(3):1366-75 - PubMed
  30. J Neurosci. 2002 Dec 1;22(23):10487-93 - PubMed
  31. J Pharmacol Exp Ther. 1997 Mar;280(3):1192-200 - PubMed
  32. Mol Pharmacol. 1993 Dec;44(6):1202-10 - PubMed
  33. Synapse. 1989;4(2):126-31 - PubMed
  34. J Pharmacol Exp Ther. 2008 Aug;326(2):596-603 - PubMed
  35. Mol Pharmacol. 2010 May;77(5):793-803 - PubMed
  36. Curr Opin Cell Biol. 1991 Apr;3(2):213-7 - PubMed
  37. Psychopharmacology (Berl). 2009 Sep;205(4):529-64 - PubMed
  38. Neuroreport. 1992 Jul;3(7):563-6 - PubMed
  39. Neuropharmacology. 2002 Sep;43(4):685-94 - PubMed
  40. J Physiol. 2004 Feb 1;554(Pt 3):879-89 - PubMed
  41. J Neurosci. 2005 Apr 20;25(16):4118-26 - PubMed
  42. Alcohol Clin Exp Res. 2003 Aug;27(8):1220-5 - PubMed
  43. Psychopharmacology (Berl). 2011 May;215(2):391-8 - PubMed
  44. J Neurophysiol. 2008 Dec;100(6):3417-28 - PubMed
  45. Physiol Rev. 1997 Jan;77(1):1-20 - PubMed
  46. J Neurosci. 2007 Nov 7;27(45):12367-77 - PubMed
  47. J Neurochem. 2002 Jan;80(2):317-27 - PubMed
  48. Brain Res Mol Brain Res. 2003 Jul 4;115(1):78-86 - PubMed
  49. J Physiol. 1999 Dec 1;521 Pt 2:421-35 - PubMed
  50. Alcohol Clin Exp Res. 2003 Mar;27(3):396-409 - PubMed
  51. Mol Biol Cell. 1992 Nov;3(11):1215-28 - PubMed
  52. Nat Neurosci. 2005 Jul;8(7):889-97 - PubMed

Publication Types

Grant support