Display options
Share it on

Mech Res Commun. 2012 Jun 01;42:40-50. doi: 10.1016/j.mechrescom.2011.11.004. Epub 2011 Nov 22.

A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload.

Mechanics research communications

Roy C P Kerckhoffs, Jeffrey Omens, Andrew D McCulloch

Affiliations

  1. Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093-0412, USA.

PMID: 22639476 PMCID: PMC3358801 DOI: 10.1016/j.mechrescom.2011.11.004

Abstract

Adult cardiac muscle adapts to mechanical changes in the environment by growth and remodeling (G&R) via a variety of mechanisms. Hypertrophy develops when the heart is subjected to chronic mechanical overload. In ventricular pressure overload (e.g. due to aortic stenosis) the heart typically reacts by concentric hypertrophic growth, characterized by wall thickening due to myocyte radial growth when sarcomeres are added in parallel. In ventricular volume overload, an increase in filling pressure (e.g. due to mitral regurgitation) leads to eccentric hypertrophy as myocytes grow axially by adding sarcomeres in series leading to ventricular cavity enlargement that is typically accompanied by some wall thickening. The specific biomechanical stimuli that stimulate different modes of ventricular hypertrophy are still poorly understood. In a recent study, based on in-vitro studies in micropatterned myocyte cell cultures subjected to stretch, we proposed that cardiac myocytes grow longer to maintain a preferred sarcomere length in response to increased fiber strain and grow thicker to maintain interfilament lattice spacing in response to increased cross-fiber strain. Here, we test whether this growth law is able to predict concentric and eccentric hypertrophy in response to aortic stenosis and mitral valve regurgitation, respectively, in a computational model of the adult canine heart coupled to a closed loop model of circulatory hemodynamics. A non-linear finite element model of the beating canine ventricles coupled to the circulation was used. After inducing valve alterations, the ventricles were allowed to adapt in shape in response to mechanical stimuli over time. The proposed growth law was able to reproduce major acute and chronic physiological responses (structural and functional) when integrated with comprehensive models of the pressure-overloaded and volume-overloaded canine heart, coupled to a closed-loop circulation. We conclude that strain-based biomechanical stimuli can drive cardiac growth, including wall thickening during pressure overload.

References

  1. Brief Bioinform. 2010 Jan;11(1):111-26 - PubMed
  2. J Biomech Eng. 1991 Feb;113(1):42-55 - PubMed
  3. Circulation. 1998 Aug 11;98(6):588-95 - PubMed
  4. Circulation. 2002 Jan 1;105(1):85-92 - PubMed
  5. Circ Res. 1999 Nov 12;85(10):e59-69 - PubMed
  6. Biotechnol Bioeng. 2003 Mar 5;81(5):578-87 - PubMed
  7. J Am Coll Cardiol. 2010 Apr 27;55(17):1826-34 - PubMed
  8. Am J Physiol. 1999 Feb;276(2):H595-607 - PubMed
  9. Am J Physiol. 1999 Dec;277(6):H2176-84 - PubMed
  10. Hypertension. 1998 Oct;32(4):753-7 - PubMed
  11. Circ Res. 2011 Jan 7;108(1):113-28 - PubMed
  12. Circulation. 1995 Feb 15;91(4):1022-8 - PubMed
  13. Semin Thorac Cardiovasc Surg. 2005 Winter;17(4):361-3 - PubMed
  14. Med Image Anal. 2009 Apr;13(2):345 - PubMed
  15. Am J Physiol. 1987 May;252(5 Pt 2):H1023-30 - PubMed
  16. Am J Physiol. 1996 Dec;271(6 Pt 2):H2689-700 - PubMed
  17. J Clin Invest. 1928 Feb;5(2):205-27 - PubMed
  18. Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1083-91 - PubMed
  19. J Mech Phys Solids. 2011 Apr 1;59(4):863-883 - PubMed
  20. J Am Coll Cardiol. 2003 Aug 6;42(3):558-67 - PubMed
  21. Ann Biomed Eng. 2009 Nov;37(11):2234-55 - PubMed
  22. J Mol Cell Cardiol. 2010 May;48(5):817-23 - PubMed
  23. Circ Res. 2004 Mar 19;94(5):642-9 - PubMed
  24. Annu Rev Biomed Eng. 2009;11:109-34 - PubMed
  25. Prog Biophys Mol Biol. 1998;69(2-3):559-72 - PubMed
  26. Circulation. 2007 Aug 14;116(7):755-63 - PubMed
  27. J Appl Physiol (1985). 2004 Oct;97(4):1453-60 - PubMed
  28. Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3707-12 - PubMed
  29. J Cardiovasc Electrophysiol. 2005 Sep;16 Suppl 1:S35-41 - PubMed
  30. Nat Rev Mol Cell Biol. 2006 Aug;7(8):589-600 - PubMed
  31. Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1447-55 - PubMed
  32. Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3759-67 - PubMed
  33. Cardiovasc Res. 1981 Sep;15(9):515-21 - PubMed
  34. Circ Res. 1995 Jul;77(1):182-93 - PubMed
  35. Circ Res. 1988 Mar;62(3):543-53 - PubMed
  36. Biomech Model Mechanobiol. 2011 Dec;10(6):799-811 - PubMed
  37. Circ Res. 1976 Mar;38(3):172-8 - PubMed
  38. J Theor Biol. 2010 Aug 7;265(3):433-42 - PubMed
  39. J Biomech Eng. 2011 Oct;133(10):101003 - PubMed
  40. Am J Physiol Heart Circ Physiol. 2003 Apr;284(4):H1277-84 - PubMed
  41. Am J Physiol. 1992 Jul;263(1 Pt 2):H293-306 - PubMed
  42. Int J Biochem Cell Biol. 2009 Dec;41(12):2351-5 - PubMed
  43. J Clin Invest. 1975 Jul;56(1):56-64 - PubMed
  44. Biomech Model Mechanobiol. 2009 Aug;8(4):301-9 - PubMed
  45. Am J Physiol Heart Circ Physiol. 2005 Nov;289(5):H1889-97 - PubMed
  46. Trends Cardiovasc Med. 1992 Jul-Aug;2(4):152-5 - PubMed
  47. Am Heart J. 1995 Nov;130(5):1045-53 - PubMed
  48. Cardiovasc Res. 2011 May 1;90(2):243-50 - PubMed
  49. Cardiovasc Res. 2004 Aug 15;63(3):423-32 - PubMed
  50. J Biomech. 2012 Mar 15;45(5):865-71 - PubMed
  51. J Biomech. 1994 Apr;27(4):455-67 - PubMed
  52. Lancet. 2006 Jan 28;367(9507):356-67 - PubMed
  53. Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1943-54 - PubMed
  54. Circ Heart Fail. 2010 Jul;3(4):528-36 - PubMed
  55. Am J Physiol. 1995 Dec;269(6 Pt 2):H2065-73 - PubMed
  56. Circ Res. 1988 Sep;63(3):550-62 - PubMed
  57. Am J Physiol. 1999 Mar;276(3):H881-91 - PubMed
  58. J Thorac Cardiovasc Surg. 2008 Jan;135(1):188-95 - PubMed
  59. Circulation. 1991 Jun;83(6):2101-10 - PubMed
  60. Am J Physiol. 1997 Sep;273(3 Pt 2):H1198-204 - PubMed

Publication Types

Grant support