Display options
Share it on

Adv Hematol. 2012;2012:149780. doi: 10.1155/2012/149780. Epub 2012 Apr 24.

EBV Reactivation and Chromosomal Polysomies: Euphorbia tirucalli as a Possible Cofactor in Endemic Burkitt Lymphoma.

Advances in hematology

Susanna Mannucci, Anna Luzzi, Alessandro Carugi, Alessandro Gozzetti, Stefano Lazzi, Valeria Malagnino, Monique Simmonds, Maria Grazia Cusi, Lorenzo Leoncini, Cornelia A van den Bosch, Giulia De Falco

Affiliations

  1. Department Human Pathology and Oncology, University of Siena, 53100 Siena, Italy.

PMID: 22593768 PMCID: PMC3347697 DOI: 10.1155/2012/149780

Abstract

Burkitt lymphoma is endemic in the Equatorial Belt of Africa, its molecular hallmark is an activated, MYC gene mostly due to a chromosomal translocation. Especially in its endemic clinical variant, Burkitt lymphoma is associated with the oncogenic Epstein-Barr virus (EBV), and holoendemic malaria acts as an amplifier. Environmental factors may also cooperate in Burkitt lymphomagenesis in the endemic regions, such as plants used as traditional herbal remedies. Euphorbia tirucalli, a plant known to possess EBV-activating substances, has a similar geographical distribution to endemic Burkitt's Lymphoma and is used as a hedge, herbal remedy and toy in the Lymphoma BeltI. In this study we aimed at determining if exposure to Euphorbia tirucalli could contribute to lymphomagenesis, and at which extent. Lymphoblastoid and cord blood-derived cell lines were treated with plant extracts, and the expression of EBV-coded proteins was checked, to assess EBV reactivation. The occurrence of chromosomal translocations was then investigated by FISH. Our preliminary results suggest that E. tirucalli is able to reactivate EBV and determine chromosomal alterations, which leads to c-MYC altered expression. The existence of genomic alterations might determine the accumulation of further genetic alteration, which could eventually lead to a transformed phenotype.

References

  1. J Virol. 1991 Dec;65(12):6838-44 - PubMed
  2. Cancer Lett. 1981 Apr;12(3):175-80 - PubMed
  3. Cancer Lett. 1983 Jun;19(2):199-205 - PubMed
  4. Anticancer Res. 2002 Nov-Dec;22(6C):4065-71 - PubMed
  5. Br J Surg. 1958 Nov;46(197):218-23 - PubMed
  6. In Vitro Cell Dev Biol. 1986 Dec;22(12):689-94 - PubMed
  7. J Biol Chem. 1992 Dec 5;267(34):24157-60 - PubMed
  8. Virus Genes. 2000;20(2):117-25 - PubMed
  9. Ann Med Interne (Paris). 1997;148(5):357-66 - PubMed
  10. Med Sci Monit. 2003 Jan;9(1):HY1-9 - PubMed
  11. Mol Cancer Res. 2011 Oct;9(10):1346-55 - PubMed
  12. J Infect Dis. 2005 Apr 15;191(8):1233-8 - PubMed
  13. Z Naturforsch C Biosci. 1985 Sep-Oct;40(9-10):631-46 - PubMed
  14. N Engl J Med. 2004 Mar 25;350(13):1328-37 - PubMed
  15. Cancer Res. 1992 Jun 1;52(11):3048-51 - PubMed
  16. Methods. 2001 Dec;25(4):402-8 - PubMed
  17. J Pathol. 2008 Dec;216(4):440-50 - PubMed
  18. Br J Cancer. 2003 May 19;88(10):1566-9 - PubMed
  19. IARC Sci Publ. 1985;(60):265-92 - PubMed
  20. J Virol. 1999 May;73(5):4481-4 - PubMed
  21. Lancet Oncol. 2004 Dec;5(12):738-46 - PubMed
  22. Lancet. 1991 May 18;337(8751):1190 - PubMed
  23. J Natl Cancer Inst. 1974 Apr;52(4):1037-40 - PubMed
  24. Immunopharmacol Immunotoxicol. 2011 Jun;33(2):279-90 - PubMed
  25. Nature. 1982 Jul 29;298(5873):474-6 - PubMed
  26. Nature. 1978 Aug 24;274(5673):756-61 - PubMed
  27. Cell. 1991 Jun 28;65(7):1107-15 - PubMed
  28. Int J Cancer. 2010 Mar 15;126(6):1316-26 - PubMed
  29. Lancet. 1987 May 30;1(8544):1257-8 - PubMed
  30. Anticancer Res. 1994 May-Jun;14(3A):933-6 - PubMed
  31. Semin Cancer Biol. 1992 Oct;3(5):285-95 - PubMed
  32. Br J Cancer. 1993 Dec;68(6):1232-5 - PubMed

Publication Types