Display options
Share it on

J Drug Deliv. 2012;2012:579629. doi: 10.1155/2012/579629. Epub 2012 Jul 05.

Composite polylactic-methacrylic Acid copolymer nanoparticles for the delivery of methotrexate.

Journal of drug delivery

Bongani Sibeko, Yahya E Choonara, Lisa C du Toit, Girish Modi, Dinesh Naidoo, Riaz A Khan, Pradeep Kumar, Valence M K Ndesendo, Sunny E Iyuke, Viness Pillay

Affiliations

  1. Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.

PMID: 22919501 PMCID: PMC3418700 DOI: 10.1155/2012/579629

Abstract

The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8-86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken.

References

  1. Int J Pharm. 2008 Jan 22;347(1-2):93-101 - PubMed
  2. AAPS PharmSciTech. 2005 Sep 20;6(1):E100-7 - PubMed
  3. J Pharmacol Exp Ther. 1999 Dec;291(3):1017-22 - PubMed
  4. Pharm Res. 2004 Jan;21(1):43-9 - PubMed
  5. Colloids Surf B Biointerfaces. 2007 Sep 1;59(1):24-34 - PubMed
  6. Int J Nanomedicine. 2006;1(2):117-28 - PubMed
  7. J Pharm Pharmacol. 1979 May;31(5):331-2 - PubMed
  8. Pharm Res. 1995 Apr;12(4):534-40 - PubMed
  9. Biomaterials. 2000 Dec;21(23):2361-70 - PubMed
  10. J Pharm Sci. 1979 Dec;68(12):1521-4 - PubMed
  11. Acc Chem Res. 2000 Feb;33(2):94-101 - PubMed
  12. J Microencapsul. 1990 Jul-Sep;7(3):297-325 - PubMed
  13. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1038-44 - PubMed
  14. Adv Drug Deliv Rev. 2003 Feb 24;55(3):329-47 - PubMed
  15. J Control Release. 2000 Nov 3;69(2):283-95 - PubMed
  16. Nat Biotechnol. 2003 Oct;21(10):1184-91 - PubMed
  17. Drug Discov Today Technol. 2005 Spring;2(1):97-102 - PubMed
  18. Biomaterials. 2003 May;24(10):1781-5 - PubMed
  19. Colloids Surf B Biointerfaces. 2005 Aug;44(2-3):65-73 - PubMed
  20. Pharm Res. 1993 Dec;10(12):1732-7 - PubMed
  21. Biomaterials. 2003 Nov;24(24):4529-37 - PubMed
  22. J Huazhong Univ Sci Technolog Med Sci. 2005;25(6):642-4 - PubMed
  23. J Control Release. 1999 Feb 22;57(3):259-68 - PubMed
  24. J Control Release. 2004 Nov 5;100(1):5-28 - PubMed
  25. FASEB J. 2002 Aug;16(10):1217-26 - PubMed
  26. Int J Pharm. 2000 Nov 19;209(1-2):1-14 - PubMed
  27. J Control Release. 2001 Jan 29;70(1-2):1-20 - PubMed
  28. J Agric Food Chem. 2008 Aug 27;56(16):7451-8 - PubMed
  29. Int J Nanomedicine. 2008;3(4):487-96 - PubMed
  30. J Control Release. 2007 Nov 6;123(2):131-40 - PubMed
  31. Biomaterials. 2002 Aug;23(15):3247-55 - PubMed
  32. Cell Mol Life Sci. 2007 Feb;64(3):356-64 - PubMed

Publication Types