Display options
Share it on

PLoS Curr. 2012 Jul 02;4:e4fbca54a2028b. doi: 10.1371/4fbca54a2028b.

Protection by glia-conditioned medium in a cell model of Huntington disease.

PLoS currents

Carolina Ruiz, Maria Jose Casarejos, Ana Gomez, Rosa Solano, Justo Garcia de Yebenes, Maria Angeles Mena

PMID: 22919565 PMCID: PMC3423315 DOI: 10.1371/4fbca54a2028b

Abstract

The physiological role of huntingtin and the pathogenic mechanisms that produce the disease are unknown. Mutant huntingtin changes its normal localization and produces cytoplasmic and intranuclear inclusions, changes gene transcription, alters synaptic transmission, impairs mitochondrial activity and activates caspases and other pro-apoptotic molecules, promotes excitotoxicity, energy deficits, synthesis and release reduction of neurotrophic factors and oxidative stress. Previous studies confirm that the mutant huntingtin difficult neurotrophic function of astrocytes leading to neuronal dysfunction in Huntington's disease. Our objective was to study the neuroprotective potential role of glia-conditioned medium (GCM) in an in vitro model of Huntington's disease. We used conditionally-immortalized striatal neuronal progenitor cell lines (STHdhQ7/Q7 and STHdhQ111/Q111) expressing endogenous levels of normal and mutant huntingtin with 7 and 111 glutamines, respectively. We studied the protection of fetal and postnatal glia conditioned medium (GCM) on H2O2 (2 µM), glutamate (5 mM) and 3-nitropropionic acid (2.5 mM) related toxicity. We also compared the neuroprotective effects of GCM versus that of the growth factors bFGF, BDNF and GDNF. Fetal GCM protects from every toxin, reducing the cell death and increasing the cell survival. Fetal GCM reduces the caspases fragmentation of the protein PARP, the expression of chaperone Hsp70 and the accumulation of ROS and polyubiquitinated proteins. In addition, in Q111 striatal cells treated with H2O2 (2 µM) for 24 hours, the intracellular GSH levels are higher in the presence of GCM. Notably, the 13-day and 2-month postnatal GCM, totally protects from H2O2 induced cell death in mutant striatal cells. GCM neuroprotective effects are more potent than those of the already identified neurotrophic factors. We conclude that GCM protects Q111 cells from neuronal neurotoxins and the effects of GCM are more potent than those of any known neurotrophic factor. GCM may contain new and more potent, as yet unidentified, neurotrophic molecules, potentially useful in patients with Huntington's disease.

References

  1. Neuroreport. 1993 Apr;4(4):438-40 - PubMed
  2. Trends Genet. 2004 Mar;20(3):146-54 - PubMed
  3. J Neurosci. 2008 Mar 26;28(13):3277-90 - PubMed
  4. Neurology. 1989 Jun;39(6):796-801 - PubMed
  5. J Neural Transm (Vienna). 2010 Mar;117(3):325-32 - PubMed
  6. J Biol Chem. 2005 Sep 2;280(35):30773-82 - PubMed
  7. J Neural Transm (Vienna). 1997;104(4-5):317-28 - PubMed
  8. J Neurosci. 1994 Aug;14(8):4769-79 - PubMed
  9. Science. 1993 May 21;260(5111):1130-2 - PubMed
  10. Pharmacol Ther. 1995 Jan;65(1):1-18 - PubMed
  11. Brain. 2011 Mar;134(Pt 3):641-52 - PubMed
  12. Neurosci Lett. 1994 Nov 21;182(1):107-11 - PubMed
  13. Mol Neurobiol. 2011 Feb;43(1):1-11 - PubMed
  14. Hum Mol Genet. 2010 Sep 1;19(17):3372-82 - PubMed
  15. J Neurosci Res. 1991 Oct;30(2):359-71 - PubMed
  16. Brain Res Brain Res Protoc. 1997 May;1(2):127-32 - PubMed
  17. Neuroscientist. 2008 Dec;14(6):544-60 - PubMed
  18. Eur J Neurosci. 2006 Apr;23(7):1701-10 - PubMed
  19. J Ethnopharmacol. 2007 May 22;111(3):458-63 - PubMed
  20. J Neurosci. 2008 Jan 16;28(3):598-611 - PubMed
  21. J Neurochem. 2010 Jul;114(1):1-12 - PubMed
  22. Neurotox Res. 2001 Aug;3(4):397-409 - PubMed
  23. Hum Mol Genet. 2005 Oct 1;14(19):2871-80 - PubMed
  24. J Neuropathol Exp Neurol. 2001 Feb;60(2):161-72 - PubMed
  25. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22480-5 - PubMed
  26. Neurosci Lett. 1999 Sep 3;272(1):53-6 - PubMed
  27. J Neurosci. 1993 Oct;13(10):4181-92 - PubMed
  28. J Neurochem. 2010 Jun;113(5):1073-91 - PubMed
  29. J Neurosci. 2010 Jan 6;30(1):316-24 - PubMed
  30. Mol Cell Neurosci. 2000 Dec;16(6):781-92 - PubMed
  31. Hum Brain Mapp. 2011 Feb;32(2):258-70 - PubMed
  32. Biochim Biophys Acta. 2001 Nov 30;1552(1):27-37 - PubMed
  33. J Neurosci. 1987 Feb;7(2):369-79 - PubMed
  34. Neurology. 1988 Mar;38(3):341-7 - PubMed
  35. Mov Disord. 2008 Mar 15;23(4):474-83 - PubMed
  36. J Mol Neurosci. 1998 Dec;11(3):209-21 - PubMed
  37. J Neurosci Res. 2003 Sep 15;73(6):818-30 - PubMed
  38. J Neurochem. 2005 Aug;94(4):1005-14 - PubMed
  39. Hum Mol Genet. 2000 Nov 22;9(19):2799-809 - PubMed
  40. Nature. 2006 Oct 19;443(7113):787-95 - PubMed
  41. J Neural Transm Park Dis Dement Sect. 1994;8(1-2):85-97 - PubMed
  42. FASEB J. 1997 Feb;11(2):118-24 - PubMed
  43. Ann Neurol. 1997 May;41(5):646-53 - PubMed
  44. Eur J Neurosci. 2008 Jun;27(11):2803-20 - PubMed
  45. Mol Neurobiol. 2002 Jun;25(3):245-63 - PubMed
  46. J Biol Chem. 2010 Apr 2;285(14):10653-61 - PubMed
  47. Physiol Rev. 2010 Jul;90(3):905-81 - PubMed
  48. Neuron. 1995 Oct;15(4):961-73 - PubMed
  49. Hum Mol Genet. 2004 Apr 1;13(7):669-81 - PubMed
  50. Anal Biochem. 1969 Mar;27(3):502-22 - PubMed
  51. Handb Clin Neurol. 2011;100:83-100 - PubMed
  52. Arch Gen Psychiatry. 1978 Mar;35(3):377-84 - PubMed
  53. J Cell Biol. 2005 Dec 19;171(6):1001-12 - PubMed
  54. Hum Mol Genet. 2003 Mar 1;12(5):497-508 - PubMed
  55. Chang Gung Med J. 2011 Mar-Apr;34(2):135-52 - PubMed
  56. Brain Res. 2009 Jul 24;1281:91-100 - PubMed

Publication Types