Display options
Share it on

J Neurodev Disord. 2012 Aug 07;4(1):22. doi: 10.1186/1866-1955-4-22.

Adolescents with prenatal cocaine exposure show subtle alterations in striatal surface morphology and frontal cortical volumes.

Journal of neurodevelopmental disorders

Florence Roussotte, Lindsay Soderberg, Tamara Warner, Katherine Narr, Catherine Lebel, Marylou Behnke, Fonda Davis-Eyler, Elizabeth Sowell

Affiliations

  1. Department of Neurology, University of California, Los Angeles, CA, USA. [email protected].

PMID: 22958316 PMCID: PMC3488340 DOI: 10.1186/1866-1955-4-22

Abstract

BACKGROUND: Published structural neuroimaging studies of prenatal cocaine exposure (PCE) in humans have yielded somewhat inconsistent results, with several studies reporting no significant differences in brain structure between exposed subjects and controls. Here, we sought to clarify some of these discrepancies by applying methodologies that allow for the detection of subtle alterations in brain structure.

METHODS: We applied surface-based anatomical modeling methods to magnetic resonance imaging (MRI) data to examine regional changes in the shape and volume of the caudate and putamen in adolescents with prenatal cocaine exposure (nā€‰=ā€‰40, including 28 exposed participants and 12 unexposed controls, age range 14 to 16 years). We also sought to determine whether changes in regional brain volumes in frontal and subcortical regions occurred in adolescents with PCE compared to control participants.

RESULTS: The overall volumes of the caudate and putamen did not significantly differ between PCE participants and controls. However, we found significant (P <0.05, uncorrected) effects of levels of prenatal exposure to cocaine on regional patterns of striatal morphology. Higher levels of prenatal cocaine exposure were associated with expansion of certain striatal subregions and with contraction in others. Volumetric analyses revealed no significant changes in the volume of any subcortical region of interest, but there were subtle group differences in the volumes of some frontal cortical regions, in particular reduced volumes of caudal middle frontal cortices and left lateral orbitofrontal cortex in exposed participants compared to controls.

CONCLUSIONS: Prenatal cocaine exposure may lead to subtle and regionally specific patterns of regional dysmorphology in the striatum and volumetric changes in the frontal lobes. The localized and bidirectional nature of effects may explain in part the contradictions in the existing literature.

References

  1. Hum Brain Mapp. 2013 Oct;34(10):2494-510 - PubMed
  2. Front Neuroinform. 2009 Jul 20;3:22 - PubMed
  3. Pediatrics. 2008 Apr;121(4):741-50 - PubMed
  4. JAMA. 2001 Mar 28;285(12):1613-25 - PubMed
  5. J Pediatr. 2008 Mar;152(3):371-7 - PubMed
  6. Dev Neurosci. 2009;31(1-2):23-35 - PubMed
  7. Neurotoxicol Teratol. 2009 Nov-Dec;31(6):342-8 - PubMed
  8. Pediatrics. 2006 Nov;118(5):2014-24 - PubMed
  9. J Dev Behav Pediatr. 2005 Feb;26(1):42-7 - PubMed
  10. Hum Brain Mapp. 2009 Apr;30(4):1236-45 - PubMed
  11. Neurotoxicol Teratol. 2009 Jan-Feb;31(1):60-8 - PubMed
  12. Ann Neurol. 2004 Apr;55(4):522-9 - PubMed
  13. Neuron. 2002 Jan 31;33(3):341-55 - PubMed
  14. Drug Alcohol Depend. 1998 Jun-Jul;51(1-2):87-96 - PubMed
  15. Int J Dev Neurosci. 2012 Feb;30(1):1-9 - PubMed
  16. Pediatrics. 2007 Nov;120(5):e1245-54 - PubMed
  17. IEEE Trans Med Imaging. 1998 Aug;17(4):653-62 - PubMed
  18. Neuroimage. 2004 Oct;23(2):625-37 - PubMed
  19. PLoS One. 2010 Dec 09;5(12):e14277 - PubMed
  20. Schizophr Res. 2008 Dec;106(2-3):140-7 - PubMed
  21. J Dev Behav Pediatr. 2007 Jun;28(3):195-205 - PubMed
  22. Pediatrics. 1998 Feb;101(2):237-41 - PubMed
  23. J Dev Behav Pediatr. 2004 Apr;25(2):83-90 - PubMed
  24. Dev Neurosci. 2009;31(1-2):159-66 - PubMed
  25. Pediatrics. 2007 Feb;119(2):e348-59 - PubMed
  26. Neurotoxicol Teratol. 2006 May-Jun;28(3):386-402 - PubMed
  27. Curr Psychiatry Rep. 2010 Oct;12(5):454-61 - PubMed
  28. Pediatrics. 2001 Feb;107(2):227-31 - PubMed
  29. Brain Cogn. 2004 Jul;55(2):409-12 - PubMed
  30. J Pediatr Psychol. 2006 Jan-Feb;31(1):85-97 - PubMed
  31. Am J Psychiatry. 2003 Jun;160(6):1028-40 - PubMed
  32. Neurosci Lett. 2012 Aug 1;522(2):128-33 - PubMed
  33. Neurotoxicol Teratol. 2011 Jan-Feb;33(1):36-46 - PubMed
  34. Neuroimage. 1999 Feb;9(2):179-94 - PubMed
  35. Arch Neurol. 1993 Aug;50(8):873-80 - PubMed
  36. J Comput Assist Tomogr. 1998 Jan-Feb;22(1):153-65 - PubMed
  37. Neuroimage. 2006 Jul 1;31(3):968-80 - PubMed
  38. J Neurosci. 2007 Jan 3;27(1):152-7 - PubMed
  39. Brain Res Dev Brain Res. 2003 Dec 30;147(1-2):23-36 - PubMed
  40. Nat Neurosci. 2010 Jan;13(1):120-6 - PubMed
  41. Cereb Cortex. 2004 Jan;14(1):11-22 - PubMed
  42. J Pediatr. 2011 Nov;159(5):771-5 - PubMed
  43. Neuroimage. 2003 Jul;19(3):1033-48 - PubMed
  44. Pediatr Neurol. 2007 Oct;37(4):275-9 - PubMed
  45. Am J Psychiatry. 2006 Jun;163(6):1061-5 - PubMed
  46. Dev Neurosci. 2009;31(1-2):71-5 - PubMed
  47. Am J Psychiatry. 2008 Feb;165(2):229-37 - PubMed
  48. Dev Neurosci. 2012;34(2-3):174-83 - PubMed
  49. Hum Brain Mapp. 2011 May;32(5):759-70 - PubMed
  50. Child Neuropsychol. 2007 May;13(3):205-18 - PubMed
  51. Trends Cogn Sci. 2011 Apr;15(4):169-76 - PubMed
  52. Neuroimage. 1999 Feb;9(2):195-207 - PubMed

Publication Types