Display options
Share it on

J Biol Eng. 2012 Sep 07;6(1):16. doi: 10.1186/1754-1611-6-16.

Engineered cell-cell communication via DNA messaging.

Journal of biological engineering

Monica E Ortiz, Drew Endy

Affiliations

  1. Bioengineering Department, Stanford University, Y2E2 Room 269B, 473 Via Ortega, Stanford, CA, 94305-4201, USA. [email protected].

PMID: 22958599 PMCID: PMC3509006 DOI: 10.1186/1754-1611-6-16

Abstract

BACKGROUND: Evolution has selected for organisms that benefit from genetically encoded cell-cell communication. Engineers have begun to repurpose elements of natural communication systems to realize programmed pattern formation and coordinate other population-level behaviors. However, existing engineered systems rely on system-specific small molecules to send molecular messages among cells. Thus, the information transmission capacity of current engineered biological communication systems is physically limited by specific biomolecules that are capable of sending only a single message, typically "regulate transcription."

RESULTS: We have engineered a cell-cell communication platform using bacteriophage M13 gene products to autonomously package and deliver heterologous DNA messages of varying lengths and encoded functions. We demonstrate the decoupling of messages from a common communication channel via the autonomous transmission of various arbitrary genetic messages. Further, we increase the range of engineered DNA messaging across semisolid media by linking message transmission or receipt to active cellular chemotaxis.

CONCLUSIONS: We demonstrate decoupling of a communication channel from message transmission within engineered biological systems via the autonomous targeted transduction of user-specified heterologous DNA messages. We also demonstrate that bacteriophage M13 particle production and message transduction occurs among chemotactic bacteria. We use chemotaxis to improve the range of DNA messaging, increasing both transmission distance and communication bit rates relative to existing small molecule-based communication systems. We postulate that integration of different engineered cell-cell communication platforms will allow for more complex spatial programming of dynamic cellular consortia.

References

  1. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5421-24 - PubMed
  2. Nature. 1990 Jan 4;343(6253):33-7 - PubMed
  3. Cell. 2009 Jun 26;137(7):1272-81 - PubMed
  4. Mol Syst Biol. 2008;4:187 - PubMed
  5. J Bacteriol. 1995 Jul;177(14):4066-76 - PubMed
  6. Microbiology (Reading). 1998 Sep;144 ( Pt 9):2579-2587 - PubMed
  7. J Bacteriol. 1994 May;176(10):3076-80 - PubMed
  8. J Bacteriol. 1993 Jul;175(13):4260-2 - PubMed
  9. Nat Biotechnol. 2006 Jun;24(6):708-12 - PubMed
  10. Mol Microbiol. 2004 Feb;51(3):765-76 - PubMed
  11. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34 - PubMed
  12. Mol Ther. 2001 Apr;3(4):476-84 - PubMed
  13. Annu Rev Microbiol. 2001;55:165-99 - PubMed
  14. J Bacteriol. 1992 Dec;174(23):7495-9 - PubMed
  15. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6355-60 - PubMed
  16. Annu Rev Genet. 1996;30:297-41 - PubMed
  17. Gene. 1984 Feb;27(2):183-91 - PubMed
  18. Trends Microbiol. 1995 Jun;3(6):223-8 - PubMed
  19. FASEB J. 1999 Apr;13(6):727-34 - PubMed
  20. J Biol Eng. 2008 Apr 14;2:5 - PubMed
  21. Mol Microbiol. 2005 Feb;55(3):712-23 - PubMed
  22. Nature. 2004 Apr 22;428(6985):868-71 - PubMed
  23. PLoS One. 2011;6(5):e19991 - PubMed
  24. Langmuir. 2008 Mar 18;24(6):2947-52 - PubMed
  25. J Mol Biol. 1991 May 5;219(1):61-8 - PubMed
  26. Biochem Biophys Res Commun. 1999 Feb 16;255(2):386-93 - PubMed
  27. Biotechniques. 1989 Mar;7(3):282-9 - PubMed
  28. J Mol Biol. 1999 Apr 30;288(2):203-11 - PubMed
  29. Virology. 1955 Jul;1(2):190-206 - PubMed
  30. Biotechnol Prog. 2010 Sep-Oct;26(5):1213-21 - PubMed
  31. Bacteriol Rev. 1969 Jun;33(2):172-209 - PubMed
  32. Nature. 2011 Jan 13;469(7329):212-5 - PubMed
  33. Circ Res. 2007 Mar 30;100(6):782-94 - PubMed
  34. J Bacteriol. 1988 Nov;170(11):5312-6 - PubMed
  35. Methods Mol Biol. 1993;23:9-22 - PubMed
  36. J Bacteriol. 1976 May;126(2):758-70 - PubMed
  37. J Bacteriol. 2003 Mar;185(5):1485-91 - PubMed
  38. Nat Rev Microbiol. 2003 Oct;1(1):45-54 - PubMed
  39. Nucleic Acids Res. 1981 Jan 24;9(2):309-21 - PubMed
  40. Nature. 2010 Jan 21;463(7279):326-30 - PubMed
  41. Nature. 2005 Apr 28;434(7037):1130-4 - PubMed
  42. Nat Biotechnol. 2008 Jul;26(7):787-93 - PubMed
  43. J Gen Physiol. 1952 May;36(1):39-56 - PubMed
  44. PLoS One. 2009 Nov 04;4(11):e7569 - PubMed
  45. Gene. 1985;33(3):341-9 - PubMed
  46. Nature. 2000 May 18;405(6784):299-304 - PubMed

Publication Types