Display options
Share it on

Bacteriophage. 2011 Jul 01;1(4):207-218. doi: 10.4161/bact.1.4.18470.

Phylogenetic structure and evolution of regulatory genes and integrases of P2-like phages.

Bacteriophage

Hanna Nilsson, Carlos Cardoso-Palacios, Elisabeth Haggård-Ljungquist, Anders S Nilsson

Affiliations

  1. Department of Genetics, Microbiology, and Toxicology; Stockholm University; Stockholm, Sweden.

PMID: 23050214 PMCID: PMC3448106 DOI: 10.4161/bact.1.4.18470

Abstract

The phylogenetic relationships and structural similarities of the proteins encoded within the regulatory region (containing the integrase gene and the lytic-lysogenic transcriptional switch genes) of P2-like phages were analyzed, and compared with the phylogenetic relationship of P2-like phages inferred from four structural genes. P2-like phages are thought to be one of the most genetically homogenous phage groups but the regulatory region nevertheless varies extensively between different phage genomes.   The analyses showed that there are many types of regulatory regions, but two types can be clearly distinguished; regions similar either to the phage P2 or to the phage 186 regulatory regions. These regions were also found to be most frequent among the sequenced P2-like phage or prophage genomes, and common in phages using Escherichia coli as a host. Both the phylogenetic and the structural analyses showed that these two regions are related. The integrases as well as the cox/apl genes show a common monophyletic origin but the immunity repressor genes, the type P2 C gene and the type 186 cI gene, are likely of different origin. There was no indication of recombination between the P2-186 types of regulatory genes but the comparison of the phylogenies of the regulatory region with the phylogeny based on four structural genes revealed recombinational events between the regulatory region and the structural genes. Less common regulatory regions were phylogenetically heterogeneous and typically contained a fusion of genes from distantly related or unknown phages and P2-like genes.

References

  1. Biochim Biophys Acta. 1964 Aug 12;87:631-40 - PubMed
  2. Biochemistry. 2007 Apr 24;46(16):4681-93 - PubMed
  3. Trends Genet. 2000 Jun;16(6):276-7 - PubMed
  4. J Gen Microbiol. 1993 Jun;139 Pt 6:1125-32 - PubMed
  5. Genetics. 1954 Jul;39(4):440-52 - PubMed
  6. J Bacteriol. 2003 Sep;185(17):5182-91 - PubMed
  7. J Biol Chem. 1992 Apr 5;267(10):6859-64 - PubMed
  8. J Bacteriol. 1972 Aug;111(2):303-7 - PubMed
  9. Mol Cell. 2006 Mar 3;21(5):605-15 - PubMed
  10. Res Microbiol. 2007 May;158(4):311-7 - PubMed
  11. BMC Microbiol. 2009 Oct 26;9:224 - PubMed
  12. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2192-7 - PubMed
  13. Mol Phylogenet Evol. 2001 Nov;21(2):259-69 - PubMed
  14. Mol Microbiol. 1997 Feb;23(4):669-81 - PubMed
  15. J Bacteriol. 1951 Sep;62(3):293-300 - PubMed
  16. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201 - PubMed
  17. Virology. 1971 Dec;46(3):691-702 - PubMed
  18. Virology. 1972 Jul;49(1):180-7 - PubMed
  19. EMBO J. 1987 Oct;6(10):3191-9 - PubMed
  20. J Bacteriol. 1984 Feb;157(2):690-3 - PubMed
  21. Nucleic Acids Res. 2010 Nov;38(21):7778-90 - PubMed
  22. J Virol. 1999 Dec;73(12):9816-26 - PubMed
  23. J Gen Microbiol. 1991 Mar;137(3):601-6 - PubMed
  24. Adv Genet. 1971;16:199-237 - PubMed
  25. Virology. 2010 Dec 5;408(1):64-70 - PubMed
  26. Mol Biol Evol. 2004 Jan;21(1):1-13 - PubMed
  27. J Bacteriol. 2006 Jun;188(11):3923-35 - PubMed
  28. Virology. 2008 Mar 1;372(1):85-96 - PubMed
  29. Res Microbiol. 2003 May;154(4):253-7 - PubMed

Publication Types