Display options
Share it on

Genet Vaccines Ther. 2012 Aug 08;10(1):5. doi: 10.1186/1479-0556-10-5.

A combination of intradermal jet-injection and electroporation overcomes in vivo dose restriction of DNA vaccines.

Genetic vaccines and therapy

David Hallengärd, Andreas Bråve, Maria Isaguliants, Pontus Blomberg, Jenny Enger, Richard Stout, Alan King, Britta Wahren

Affiliations

  1. Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, 171 77, Stockholm, Sweden. [email protected].

PMID: 22873174 PMCID: PMC3532290 DOI: 10.1186/1479-0556-10-5

Abstract

BACKGROUND: The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans.

METHODS: Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP).

RESULTS: Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of DNA. After division of a defined DNA dose into multiple skin sites, the humoral response was particularly enhanced by Biojector while cellular responses were particularly enhanced by EP. Furthermore, a close correlation between in vivo antigen expression and cell-mediated as well as humoral immune responses was observed.

CONCLUSIONS: These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.

References

  1. DNA Cell Biol. 2006 May;25(5):277-86 - PubMed
  2. J Biol Chem. 2009 Dec 4;284(49):33800-6 - PubMed
  3. Vaccine. 2010 Nov 29;28(51):8203-9 - PubMed
  4. PLoS One. 2010 Aug 19;5(8):e12281 - PubMed
  5. PLoS One. 2009 Sep 30;4(9):e7226 - PubMed
  6. Mol Ther. 2005 Dec;12(6):1197-205 - PubMed
  7. Mol Ther. 2007 Sep;15(9):1724-33 - PubMed
  8. Gut. 2009 Apr;58(4):560-9 - PubMed
  9. Vaccine. 2006 Jan 16;24(3):367-73 - PubMed
  10. Vaccine. 2008 Jan 17;26(3):440-8 - PubMed
  11. Lancet. 1998 May 2;351(9112):1320-5 - PubMed
  12. Gene Ther. 2007 Jun;14(12):950-9 - PubMed
  13. PLoS One. 2011;6(5):e19252 - PubMed
  14. Gene Ther. 2010 Jul;17(7):839-45 - PubMed
  15. Eur J Dermatol. 2002 Jul-Aug;12(4):390-9; quiz 400-1 - PubMed
  16. J Control Release. 2007 Dec 4;124(1-2):81-7 - PubMed
  17. Vaccine. 2006 Jan 16;24(3):287-92 - PubMed
  18. J Control Release. 2000 May 15;66(2-3):199-214 - PubMed
  19. J Cardiovasc Pharmacol. 2002 Feb;39(2):215-24 - PubMed
  20. BMC Biotechnol. 2006 Mar 08;6:16 - PubMed
  21. Vaccine. 2011 Jan 17;29(4):839-48 - PubMed
  22. Blood. 2008 Dec 1;112(12):4585-90 - PubMed
  23. Mol Ther. 2003 Dec;8(6):992-8 - PubMed
  24. Vaccine. 2007 Jul 26;25(30):5485-94 - PubMed
  25. J Immunol. 2007 May 1;178(9):5652-8 - PubMed
  26. Clin Vaccine Immunol. 2011 Sep;18(9):1577-81 - PubMed
  27. Science. 1990 Mar 23;247(4949 Pt 1):1465-8 - PubMed
  28. Gene Ther. 1997 Mar;4(3):181-8 - PubMed
  29. Vaccine. 2008 Jun 13;26(25):3112-20 - PubMed
  30. Vaccine. 2007 Apr 12;25(15):2951-8 - PubMed
  31. Hum Gene Ther. 1993 Aug;4(4):419-31 - PubMed
  32. Gene Ther. 2009 Mar;16(3):441-7 - PubMed
  33. J Infect Dis. 1998 Jul;178(1):92-100 - PubMed
  34. J Virol. 1992 Jan;66(1):150-9 - PubMed
  35. J Infect Dis. 2008 Nov 15;198(10):1482-90 - PubMed
  36. Vaccine. 1994 Dec;12(16):1541-4 - PubMed
  37. Vaccine. 2009 Jun 8;27(28):3692-6 - PubMed
  38. J Immunol. 1999 Apr 1;162(7):4163-70 - PubMed
  39. J Virol. 2008 Jun;82(11):5643-9 - PubMed
  40. Science. 1993 Mar 19;259(5102):1745-9 - PubMed
  41. Hum Gene Ther. 2009 Nov;20(11):1269-78 - PubMed
  42. Vaccine. 2001 Oct 12;20(1-2):275-80 - PubMed
  43. Cell Immunol. 1996 May 1;169(2):288-93 - PubMed
  44. J Gene Med. 2005 Sep;7(9):1235-45 - PubMed

Publication Types