Display options
Share it on

Chem Cent J. 2012 Aug 08;6(1):84. doi: 10.1186/1752-153X-6-84.

Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model.

Chemistry Central journal

Chang Min Choi, Jiyoung Heo, Nam Joon Kim

Affiliations

  1. Department of Chemistry, Chungbuk National University, Chungbuk, 361-763, South Korea. [email protected].

PMID: 22873431 PMCID: PMC3464923 DOI: 10.1186/1752-153X-6-84

Abstract

BACKGROUND: Dibenzo-18-crown-6 (DB18C6) exhibits the binding selectivity for alkali metal cations in solution phase. In this study, we investigate the main forces that determine the binding selectivity of DB18C6 for the metal cations in aqueous solution using the density functional theory (DFT) and the conductor-like polarizable continuum model (CPCM).

RESULTS: The bond dissociation free energies (BDFE) of DB18C6 complexes with alkali metal cations (M+-DB18C6, M = Li, Na, K, Rb, and Cs) in aqueous solution are calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31 + G(d) level using the CPCM. It is found that the theoretical BDFE is the largest for K+-DB18C6 and decreases as the size of the metal cation gets larger or smaller than that of K+, which agrees well with previous experimental results.

CONCLUSION: The solvation energy of M+-DB18C6 in aqueous solution plays a key role in determining the binding selectivity of DB18C6. In particular, the non-electrostatic dispersion interaction between the solute and solvent, which depends strongly on the complex structure, is largely responsible for the different solvation energies of M+-DB18C6. This study shows that the implicit solvation model like the CPCM works reasonably well in predicting the binding selectivity of DB18C6 in aqueous solution.

References

  1. J Am Chem Soc. 2008 Nov 19;130(46):15381-92 - PubMed
  2. J Phys Chem A. 2010 Jan 28;114(3):1514-20 - PubMed
  3. Inorg Chem. 2008 Mar 3;47(5):1465-75 - PubMed
  4. J Am Chem Soc. 2009 Dec 2;131(47):17277-85 - PubMed
  5. Dalton Trans. 2012 Aug 7;41(29):8767-9 - PubMed
  6. J Chem Theory Comput. 2005 Jan;1(1):70-7 - PubMed
  7. Angew Chem Int Ed Engl. 2012 Jul 16;51(29):7297-300 - PubMed
  8. J Phys Chem B. 2012 Feb 2;116(4):1437-45 - PubMed
  9. Chem Rev. 2005 Aug;105(8):2999-3093 - PubMed
  10. Phys Chem Chem Phys. 2008 Nov 7;10(41):6238-44 - PubMed
  11. J Phys Chem A. 2011 Nov 17;115(45):13180-90 - PubMed
  12. Phys Chem Chem Phys. 2007 Aug 28;9(32):4452-9 - PubMed
  13. J Chem Phys. 2006 Apr 14;124(14):144507 - PubMed
  14. Chemphyschem. 2008 Oct 6;9(14):1989-96 - PubMed
  15. J Phys Chem B. 2008 Sep 11;112(36):11189-93 - PubMed
  16. Curr Opin Chem Biol. 1997 Dec;1(4):449-57 - PubMed
  17. J Phys Chem B. 2008 Aug 14;112(32):9709-19 - PubMed
  18. J Phys Chem A. 2009 Oct 29;113(43):12028-34 - PubMed
  19. J Phys Chem A. 2012 Apr 26;116(16):4057-68 - PubMed
  20. J Phys Chem A. 2009 Jul 23;113(29):8343-50 - PubMed
  21. J Am Chem Soc. 2011 Aug 10;133(31):12256-63 - PubMed
  22. Chem Rev. 2004 May;104(5):2723-50 - PubMed
  23. J Am Chem Soc. 2011 Jul 27;133(29):11136-46 - PubMed
  24. Nucleic Acids Res. 2001 Oct 1;29(19):3910-8 - PubMed
  25. Biopolymers. 2010 Apr;93(4):330-9 - PubMed
  26. J Comput Chem. 2003 Apr 30;24(6):669-81 - PubMed

Publication Types