Display options
Share it on

J Thorac Dis. 2012 Aug;4(4):358-67. doi: 10.3978/j.issn.2072-1439.2012.07.15.

A method for limiting pitfalls in the production of enhancement kinetic curves in 3T dynamic magnetic resonance mammography.

Journal of thoracic disease

Eleftherios Lavdas, Panayiotis Mavroidis, Violeta Roka, Nikolaos Arikidis, Dimitrios L Arvanitis, Ioannis V Fezoulidis, Katerina Vassiou

PMID: 22934138 PMCID: PMC3426736 DOI: 10.3978/j.issn.2072-1439.2012.07.15

Abstract

PURPOSE: The aim of the present study is to investigate means for the reduction or even elimination of enhancement kinetic curve errors due to breast motion in order to avoid pitfalls and to increase the sensitivity and specificity of the method.

METHODS: 115 women underwent breast Magnetic Resonance Imaging (MRI). All patients were properly immobilized in a dedicated bilateral phased array coil. A magnetic resonance unit 3-Tesla (Signa, GE Healthcare) was used. The following sequences were applied: (I) axial Τ2-TSE, (II) axial STIR and (III) Vibrant axial T1-weighted fat saturation (six phases). Kinetic curves were derived semi-automatically using the software of the system and manually by positioning the regions of interest (ROI) from stable reference points in all the phases.

RESULTS: 376 abnormalities in 115 patients were investigated. In 81 (21.5%) cases, a change of the enhancement kinetic curve type was found when the two different methods were used. In cases of large fatty breasts, a change of the enhancement kinetic curve type in 13 lesions was found. In cases of small and dense breasts, only in 4 lesions the kinetic curve type changed, whereas in cases of small and fatty breasts, the kinetic curve type changed in 64 lesions (50 were observed in left breasts and 14 in right breasts).

CONCLUSIONS: The derivation of enhancement kinetic curves should be performed by controlling and verifying that the ROIs lay at the same location of the lesion in all the phases of the dynamic study.

Keywords: 3 Tesla; Dynamic magnetic resonance mammography; enhancement kinetic curves

References

  1. Radiology. 2006 Jan;238(1):42-53 - PubMed
  2. JAMA. 2004 Dec 8;292(22):2735-42 - PubMed
  3. Radiology. 2000 Aug;216(2):545-53 - PubMed
  4. Phys Med Biol. 2011 Dec 21;56(24):7693-708 - PubMed
  5. Eur Radiol. 2001;11(7):1231-41 - PubMed
  6. Acta Radiol. 2002 May;43(3):275-81 - PubMed
  7. Comput Med Imaging Graph. 2008 Jun;32(4):284-93 - PubMed
  8. Med Phys. 1999 May;26(5):707-14 - PubMed
  9. Radiology. 2005 Sep;236(3):789-800 - PubMed
  10. J Thorac Dis. 2012 Aug;4(4):358-67 - PubMed
  11. Radiographics. 2006 Nov-Dec;26(6):1719-34; quiz 1719 - PubMed
  12. Acta Radiol. 1997 Jul;38(4 Pt 1):489-96 - PubMed
  13. Acta Radiol. 2010 Sep;51(7):715-21 - PubMed
  14. AJR Am J Roentgenol. 2009 Apr;192(4):1142-8 - PubMed
  15. AJR Am J Roentgenol. 2002 Mar;178(3):711-6 - PubMed
  16. AJNR Am J Neuroradiol. 2004 May;25(5):746-55 - PubMed
  17. Clin Cancer Res. 2008 Oct 15;14(20):6580-9 - PubMed
  18. Radiology. 2007 Aug;244(2):356-78 - PubMed
  19. Radiology. 2001 Jul;220(1):13-30 - PubMed
  20. Med Phys. 2012 Jan;39(1):353-66 - PubMed
  21. Technol Cancer Res Treat. 2005 Feb;4(1):39-48 - PubMed
  22. J Magn Reson Imaging. 2006 Jan;23(1):87-91 - PubMed
  23. Magn Reson Med Sci. 2005;4(3):145-9 - PubMed
  24. Med Biol Eng Comput. 2006 Mar;44(1-2):15-26 - PubMed
  25. Radiology. 1999 Apr;211(1):101-10 - PubMed
  26. AJNR Am J Neuroradiol. 2005 Nov-Dec;26(10):2455-65 - PubMed
  27. J Comput Assist Tomogr. 2004 Sep-Oct;28(5):642-6 - PubMed
  28. J Clin Oncol. 2005 Aug 20;23(24):5464-73 - PubMed

Publication Types