Display options
Share it on

Front Physiol. 2012 Sep 13;3:358. doi: 10.3389/fphys.2012.00358. eCollection 2012.

A physiologically based, multi-scale model of skeletal muscle structure and function.

Frontiers in physiology

O Röhrle, J B Davidson, A J Pullan

Affiliations

  1. Institute of Applied Mechanics (Civil Engineering), University of Stuttgart Stuttgart, Germany ; Cluster of Excellence for Simulation Technology, University of Stuttgart Stuttgart, Germany.

PMID: 22993509 PMCID: PMC3440711 DOI: 10.3389/fphys.2012.00358

Abstract

Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue.

Keywords: continuum mechanics; excitation-contraction coupling; motor-unit recruitment; multi-scale; skeletal muscle mechanics; tibialis anterior

References

  1. J Appl Physiol (1985). 2007 Aug;103(2):673-81 - PubMed
  2. Muscle Nerve. 2005 Apr;31(4):461-7 - PubMed
  3. Muscle Nerve. 2001 Jan;24(1):4-17 - PubMed
  4. Philos Trans R Soc Lond B Biol Sci. 2003 Sep 29;358(1437):1453-60 - PubMed
  5. J Neurophysiol. 1983 Dec;50(6):1380-92 - PubMed
  6. Muscle Nerve. 1995 Oct;18(10):1187-95 - PubMed
  7. Muscle Nerve. 1984 May;7(4):287-93 - PubMed
  8. J Physiol. 1977 Jan;264(3):865-79 - PubMed
  9. J Neurol Sci. 1973 Jul;19(3):307-18 - PubMed
  10. J Mech Behav Biomed Mater. 2011 Oct;4(7):1299-310 - PubMed
  11. Eur J Appl Physiol Occup Physiol. 1993;66(3):254-62 - PubMed
  12. J Electromyogr Kinesiol. 2004 Jun;14(3):369-77 - PubMed
  13. Ann Biomed Eng. 1997 Jan-Feb;25(1):96-111 - PubMed
  14. Bioinformatics. 2008 Sep 15;24(18):2122-3 - PubMed
  15. J Neurophysiol. 1993 Dec;70(6):2470-88 - PubMed
  16. J Biomech. 1999 Apr;32(4):371-80 - PubMed
  17. J Appl Physiol (1985). 2006 Dec;101(6):1766-75 - PubMed
  18. J Neurophysiol. 1965 May;28:560-80 - PubMed
  19. Prog Biophys Biophys Chem. 1957;7:255-318 - PubMed
  20. J Neurophysiol. 1965 Jan;28:85-99 - PubMed
  21. J Biomech. 2005 Apr;38(4):657-65 - PubMed
  22. Muscle Nerve. 2001 Jul;24(7):848-66 - PubMed
  23. Comput Methods Biomech Biomed Engin. 2008 Oct;11(5):489-504 - PubMed
  24. J Neurophysiol. 2000 Jan;83(1):441-52 - PubMed
  25. Brain Res. 1985 Jul 1;337(2):311-9 - PubMed
  26. J Biomech. 2007;40(15):3363-72 - PubMed
  27. J Neurol Sci. 1986 Feb;72(2-3):211-22 - PubMed
  28. J Appl Physiol (1985). 2001 Mar;90(3):865-72 - PubMed
  29. Histochem J. 1983 Feb;15(2):167-78 - PubMed
  30. Eur J Appl Physiol Occup Physiol. 1991;62(5):301-4 - PubMed
  31. Biomed Eng Online. 2007 Dec 17;6:48 - PubMed
  32. Biol Cybern. 1987;55(6):403-20 - PubMed
  33. Circ Res. 1963 Jan;12:40-50 - PubMed
  34. J Neurophysiol. 1988 Dec;60(6):1946-66 - PubMed
  35. Acta Physiol Scand. 2001 Aug;172(4):279-85 - PubMed
  36. J Physiol. 1969 Oct;204(3):539-50 - PubMed
  37. Muscle Nerve. 2005 Sep;32(3):316-25 - PubMed
  38. J Neurophysiol. 1994 May;71(5):1727-39 - PubMed
  39. J Muscle Res Cell Motil. 2007;28(6):293-313 - PubMed
  40. Med Eng Phys. 2005 Dec;27(10):862-70 - PubMed
  41. J Physiol. 1987 Oct;391:561-71 - PubMed
  42. J Physiol. 1982 Aug;329:129-42 - PubMed
  43. Ann N Y Acad Sci. 1957 Aug 9;65(6):1007-13 - PubMed
  44. J Theor Biol. 2000 Sep 7;206(1):131-49 - PubMed
  45. J Physiol. 1952 Aug;117(4):500-44 - PubMed
  46. J Neurophysiol. 1965 May;28:581-98 - PubMed
  47. Muscle Nerve. 1990 Dec;13(12):1133-45 - PubMed
  48. J Comput Neurosci. 2008 Dec;25(3):520-42 - PubMed
  49. J Neurophysiol. 1965 May;28(3):599-620 - PubMed
  50. Neuroscience. 1999 Jan;88(2):643-53 - PubMed
  51. J Biomech. 1986;19(8):589-96 - PubMed
  52. J Appl Physiol (1985). 1997 Jan;82(1):354-8 - PubMed

Publication Types