Display options
Share it on

EJNMMI Res. 2012 Aug 09;2(1):44. doi: 10.1186/2191-219X-2-44.

Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare.

EJNMMI research

Jordi L Tremoleda, Angela Kerton, Willy Gsell

Affiliations

  1. Biological Imaging Centre (BIC), Medical Research Council (MRC) Clinical Science Centre, Imperial College London, Hammersmith Campus, Cyclotron Building, Du Cane Road, London, W12 0NN, UK. [email protected].

PMID: 22877315 PMCID: PMC3467189 DOI: 10.1186/2191-219X-2-44

Abstract

The implementation of imaging technologies has dramatically increased the efficiency of preclinical studies, enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time and testing new therapies. The ability to image live animals is one of the most important advantages of these technologies. However, this also represents an important challenge as, in contrast to human studies, imaging of animals generally requires anaesthesia to restrain the animals and their gross motion. Anaesthetic agents have a profound effect on the physiology of the animal and may thereby confound the image data acquired. It is therefore necessary to select the appropriate anaesthetic regime and to implement suitable systems for monitoring anaesthetised animals during image acquisition. In addition, repeated anaesthesia required for longitudinal studies, the exposure of ionising radiations and the use of contrast agents and/or imaging biomarkers may also have consequences on the physiology of the animal and its response to anaesthesia, which need to be considered while monitoring the animals during imaging studies. We will review the anaesthesia protocols and monitoring systems commonly used during imaging of laboratory rodents. A variety of imaging modalities are used for imaging rodents, including magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computed tomography, high frequency ultrasound and optical imaging techniques such as bioluminescence and fluorescence imaging. While all these modalities are implemented for non-invasive in vivo imaging, there are certain differences in terms of animal handling and preparation, how the monitoring systems are implemented and, importantly, how the imaging procedures themselves can affect mammalian physiology. The most important and critical adverse effects of anaesthetic agents are depression of respiration, cardiovascular system disruption and thermoregulation. When anaesthetising rodents, one must carefully consider if these adverse effects occur at the therapeutic dose required for anaesthesia, if they are likely to affect the image acquisitions and, importantly, if they compromise the well-being of the animals. We will review how these challenges can be successfully addressed through an appropriate understanding of anaesthetic protocols and the implementation of adequate physiological monitoring systems.

References

  1. Anaesthesia. 1992 Jun;47(6):508-17 - PubMed
  2. Q J Nucl Med Mol Imaging. 2008 Sep;52(3):215-21 - PubMed
  3. Neuroimage. 2010 Jul 15;51(4):1395-404 - PubMed
  4. Int J Mol Imaging. 2011;2011:796025 - PubMed
  5. Nucl Med Biol. 2005 Oct;32(7):679-85 - PubMed
  6. J Neurosci Methods. 2012 Feb 15;204(1):9-18 - PubMed
  7. Lab Anim. 1993 Jan;27(1):30-9 - PubMed
  8. Lab Anim. 2000 Jul;34(3):301-6 - PubMed
  9. Eur J Pain. 2003;7(5):397-406 - PubMed
  10. J Nucl Med. 2010 May 1;51 Suppl 1:18S-32S - PubMed
  11. Lab Anim. 2010 Oct;44(4):329-36 - PubMed
  12. J Neurosci Methods. 2011 Feb 15;195(2):236-40 - PubMed
  13. Med Phys. 2010 Dec;37(12):6421-42 - PubMed
  14. J Am Assoc Lab Anim Sci. 2008 Jan;47(1):11-7 - PubMed
  15. Lab Anim. 2000 Apr;34(2):207-11 - PubMed
  16. Lab Anim. 1986 Apr;20(2):91-6 - PubMed
  17. Magn Reson Imaging. 2010 Sep;28(7):995-1003 - PubMed
  18. ILAR J. 2008;49(1):35-53 - PubMed
  19. Neuroimage. 2012 Jan 2;59(1):218-26 - PubMed
  20. Annu Rev Biomed Eng. 2010 Aug 15;12:143-66 - PubMed
  21. Lab Anim (NY). 2003 Feb;32(2):19-21 - PubMed
  22. Neurochem Int. 2008 Feb;52(3):352-62 - PubMed
  23. J Neurosci Res. 2010 Feb 1;88(2):413-9 - PubMed
  24. Med Phys. 2006 Jan;33(1):216-24 - PubMed
  25. Exp Biol Med (Maywood). 2008 Aug;233(8):930-40 - PubMed
  26. Nat Rev Drug Discov. 2006 May;5(5):411-24 - PubMed
  27. Magn Reson Med. 2008 Sep;60(3):744-8 - PubMed
  28. Methods. 2010 Jan;50(1):42-9 - PubMed
  29. Biomaterials. 2010 Aug;31(24):6249-68 - PubMed
  30. ILAR J. 2006;47(4):364-9 - PubMed
  31. J Am Vet Med Assoc. 1982 Jun 15;180(12):1462-71 - PubMed
  32. Semin Nucl Med. 2010 May;40(3):182-9 - PubMed
  33. Lab Anim. 1993 Jul;27(3):258-69 - PubMed
  34. Brain Res. 2001 Sep 21;913(2):174-9 - PubMed
  35. Expert Opin Biol Ther. 2009 Mar;9(3):293-306 - PubMed
  36. J Pharmacol Exp Ther. 1976 Mar;196(3):536-44 - PubMed
  37. Anesthesiology. 1996 Oct;85(4):794-807; discussion 27A - PubMed
  38. Appl Opt. 2006 May 1;45(13):3049-62 - PubMed
  39. Magn Reson Med. 2009 Jun;61(6):1451-8 - PubMed
  40. J Am Vet Med Assoc. 1997 May 1;210(9):1279-85 - PubMed
  41. Semin Nucl Med. 2011 May;41(3):151-65 - PubMed
  42. J Appl Physiol (1985). 1988 Aug;65(2):955-63 - PubMed
  43. Ultrasound Med Biol. 2007 Apr;33(4):512-21 - PubMed
  44. Hypertension. 1995 May;25(5):1111-5 - PubMed
  45. Urol Oncol. 2009 May-Jun;27(3):295-7 - PubMed
  46. J Bone Miner Res. 2010 Jul;25(7):1468-86 - PubMed
  47. Am J Physiol Cell Physiol. 2000 Jul;279(1):C1-C18 - PubMed
  48. MAGMA. 2004 Dec;17(3-6):157-61 - PubMed
  49. Methods. 2010 Jan;50(1):2-13 - PubMed

Publication Types