Display options
Share it on

Genome Med. 2012 Aug 31;4(8):63. doi: 10.1186/gm364. eCollection 2012.

Mass spectrometry for translational proteomics: progress and clinical implications.

Genome medicine

Erin Shammel Baker, Tao Liu, Vladislav A Petyuk, Kristin E Burnum-Johnson, Yehia M Ibrahim, Gordon A Anderson, Richard D Smith

Affiliations

  1. Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

PMID: 22943415 PMCID: PMC3580401 DOI: 10.1186/gm364

Abstract

The utility of mass spectrometry (MS)-based proteomic analyses and their clinical applications have been increasingly recognized over the past decade due to their high sensitivity, specificity and throughput. MS-based proteomic measurements have been used in a wide range of biological and biomedical investigations, including analysis of cellular responses and disease-specific post-translational modifications. These studies greatly enhance our understanding of the complex and dynamic nature of the proteome in biology and disease. Some MS techniques, such as those for targeted analysis, are being successfully applied for biomarker verification, whereas others, including global quantitative analysis (for example, for biomarker discovery), are more challenging and require further development. However, recent technological improvements in sample processing, instrumental platforms, data acquisition approaches and informatics capabilities continue to advance MS-based applications. Improving the detection of significant changes in proteins through these advances shows great promise for the discovery of improved biomarker candidates that can be verified pre-clinically using targeted measurements, and ultimately used in clinical studies - for example, for early disease diagnosis or as targets for drug development and therapeutic intervention. Here, we review the current state of MS-based proteomics with regard to its advantages and current limitations, and we highlight its translational applications in studies of protein biomarkers.

Keywords: biomarker; clinical proteomics; ion mobility separations; mass spectrometry; multiple reaction monitoring; selected reaction monitoring; shotgun proteomics; targeted proteomics; translational proteomics

References

  1. Mol Cell Proteomics. 2002 Nov;1(11):845-67 - PubMed
  2. J Clin Microbiol. 2011 Mar;49(3):887-92 - PubMed
  3. Nat Biotechnol. 2009 Jul;27(7):633-41 - PubMed
  4. Proteomics. 2012 Apr;12(8):1170-5 - PubMed
  5. Nat Biotechnol. 2006 Aug;24(8):971-83 - PubMed
  6. J Histochem Cytochem. 2009 Sep;57(9):849-60 - PubMed
  7. J Proteome Res. 2004 Nov-Dec;3(6):1234-42 - PubMed
  8. Mass Spectrom Rev. 2006 May-Jun;25(3):450-82 - PubMed
  9. J Proteomics. 2010 Oct 10;73(11):2092-123 - PubMed
  10. Anal Chem. 2002 Aug 15;74(16):4235-49 - PubMed
  11. Curr Opin Biotechnol. 2003 Feb;14(1):101-9 - PubMed
  12. J Lab Autom. 2012 Apr;17(2):116-24 - PubMed
  13. J Clin Microbiol. 2010 May;48(5):1549-54 - PubMed
  14. Anal Chem. 2005 May 15;77(10):3330-9 - PubMed
  15. Anal Chem. 2007 Oct 15;79(20):7845-52 - PubMed
  16. Anal Chem. 2003 Feb 15;75(4):768-74 - PubMed
  17. Mol Cell Proteomics. 2011 Feb;10(2):M000062-MCP201 - PubMed
  18. Clin Proteomics. 2012 Mar 20;9(1):3 - PubMed
  19. JAMA. 1998 May 20;279(19):1542-7 - PubMed
  20. J Proteome Res. 2009 Jan;8(1):290-9 - PubMed
  21. Anal Chem. 1995 Apr 15;67(8):1426-36 - PubMed
  22. J Proteome Res. 2011 Jan 7;10(1):5-16 - PubMed
  23. N Engl J Med. 1996 Oct 31;335(18):1342-9 - PubMed
  24. J Mass Spectrom. 2011 Mar;46(3):298-312 - PubMed
  25. J Proteome Res. 2008 Aug;7(8):3354-63 - PubMed
  26. Nat Methods. 2010 May;7(5):383-5 - PubMed
  27. Electrophoresis. 1999 Dec;20(18):3551-67 - PubMed
  28. Anal Chem. 2008 Sep 1;80(17):6715-23 - PubMed
  29. J Inherit Metab Dis. 2010 Oct;33(5):521-6 - PubMed
  30. N Engl J Med. 2004 Apr 1;350(14):1387-97 - PubMed
  31. Mol Cell Proteomics. 2010 Jan;9(1):184-96 - PubMed
  32. Mol Syst Biol. 2008;4:222 - PubMed
  33. Mol Cell Proteomics. 2012 Aug;11(8):540-9 - PubMed
  34. Anal Chem. 2006 Apr 15;78(8):2802-9 - PubMed
  35. J Proteome Res. 2009 Nov;8(11):5387-95 - PubMed
  36. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4 - PubMed
  37. Nat Rev Clin Oncol. 2011 Mar;8(3):121 - PubMed
  38. Mol Cell Proteomics. 2012 May;11(5):202-14 - PubMed
  39. J Proteome Res. 2012 May 4;11(5):2876-89 - PubMed
  40. Nat Biotechnol. 2009 Feb;27(2):190-8 - PubMed
  41. Mol Cell Proteomics. 2012 Jun;11(6):O111.016717 - PubMed
  42. Nat Biotechnol. 2001 Mar;19(3):242-7 - PubMed
  43. Mol Cell Proteomics. 2008 Oct;7(10):1963-73 - PubMed
  44. J Am Soc Mass Spectrom. 2008 Mar;19(3):411-9 - PubMed
  45. Clin Chem. 2012 Mar;58(3):528-30 - PubMed
  46. Nat Biotechnol. 2011 Jun 19;29(7):635-43 - PubMed
  47. Nat Protoc. 2010 Sep;5(9):1574-82 - PubMed
  48. J Am Soc Mass Spectrom. 2011 Jul;22(7):1111-20 - PubMed
  49. Anal Chem. 2009 Aug 1;81(15):6481-8 - PubMed
  50. J Biol Chem. 2011 Jul 22;286(29):25443-9 - PubMed
  51. J Proteome Res. 2004 Mar-Apr;3(2):235-44 - PubMed
  52. Science. 2011 May 6;332(6030):687-96 - PubMed
  53. Mol Cell Proteomics. 2004 Dec;3(12):1154-69 - PubMed
  54. Annu Rev Genomics Hum Genet. 2011;12:217-44 - PubMed
  55. Mol Cell Proteomics. 2007 Oct;6(10):1809-17 - PubMed
  56. J Proteome Res. 2005 Jul-Aug;4(4):1073-85 - PubMed
  57. Mol Cell Proteomics. 2006 Oct;5(10):1811-8 - PubMed
  58. Anal Chem. 2011 Mar 15;83(6):2162-71 - PubMed
  59. J Sep Sci. 2012 Jul;35(14): - PubMed
  60. Mol Cell Proteomics. 2005 Oct;4(10):1441-4 - PubMed
  61. Ann Clin Biochem. 2007 Jul;44(Pt 4):343-52 - PubMed
  62. Anal Chem. 1997 Oct 1;69(19):3959-65 - PubMed
  63. J Proteome Res. 2007 Sep;6(9):3558-65 - PubMed
  64. Nat Methods. 2008 Jun;5(6):459-60 - PubMed
  65. Nat Methods. 2008 Nov;5(11):959-64 - PubMed
  66. Methods. 2012 Feb;56(2):246-53 - PubMed
  67. Nat Methods. 2008 Nov;5(11):913-4 - PubMed
  68. Nat Biotechnol. 2011 Jun 19;29(7):625-34 - PubMed
  69. J Exp Bot. 2006;57(7):1501-8 - PubMed
  70. J Proteome Res. 2010 Feb 5;9(2):997-1006 - PubMed

Publication Types

Grant support