Display options
Share it on

Evol Appl. 2012 Nov;5(7):732-45. doi: 10.1111/j.1752-4571.2012.00251.x.

Untangling the positive genetic correlation between rainbow trout growth and survival.

Evolutionary applications

Harri Vehviläinen, Antti Kause, Hanna Kuukka-Anttila, Heikki Koskinen, Tuija Paananen

Affiliations

  1. Genetics Research, MTT Agrifood Research Finland Jokioinen, Finland.

PMID: 23144659 PMCID: PMC3492898 DOI: 10.1111/j.1752-4571.2012.00251.x

Abstract

Explanations for positive and negative genetic correlations between growth and fitness traits are essential for life-history theory and selective breeding. Here, we test whether growth and survival display genetic trade-off. Furthermore, we assess the potential of third-party traits to explain observed genetic associations. First, we estimated genetic correlations of growth and survival of rainbow trout. We then explored whether these associations are explained by genetic correlations with health, body composition and maturity traits. Analysis included 14 traits across life stages and environments. Data were recorded from 249 166 individuals belonging to 10 year classes of a pedigreed population. The results revealed that rapid growth during grow-out was genetically associated with enhanced survival (mean r(G) = 0.17). This resulted because genotypes with less nematode caused cataract grew faster and were more likely to survive. Fingerling survival was not genetically related to weight or to grow-out survival. Instead, rapid fingerling growth made fish prone to deformations (r(G) = 0.18). Evolutionary genetics provides a theoretical framework to study variation in genetic correlations. This study demonstrates that genetic correlation patterns of growth and survival can be explained by a set of key explanatory traits recorded at different life stages and that these traits can be simultaneously improved by selective breeding.

Keywords: Oncorhynchus mykiss; animal breeding; aquaculture; body size; evolutionary theory; fitness cost; life-history trade-off; quantitative genetics

References

  1. Trends Ecol Evol. 2000 Feb;15(2):66-70 - PubMed
  2. Evolution. 2000 Aug;54(4):1260-72 - PubMed
  3. J Anim Sci. 2006 Apr;84(4):807-17 - PubMed
  4. Genetics. 2008 Sep;180(1):507-16 - PubMed
  5. Evolution. 1990 May;44(3):520-538 - PubMed
  6. Biol Rev Camb Philos Soc. 2011 Feb;86(1):97-116 - PubMed
  7. Proc Biol Sci. 2008 Aug 7;275(1644):1737-44 - PubMed
  8. J Anim Sci. 2001 Jul;79(7):1723-33 - PubMed
  9. Genetics. 2001 Jul;158(3):1137-45 - PubMed
  10. J Dairy Sci. 1991 Feb;74(2):580-91 - PubMed
  11. Arch Biochem Biophys. 2004 Oct 1;430(1):10-5 - PubMed
  12. Trends Ecol Evol. 2006 Jul;21(7):362-8 - PubMed
  13. Biometrics. 1975 Jun;31(2):423-47 - PubMed
  14. J Evol Biol. 2011 Sep;24(9):1857-69 - PubMed
  15. Q Rev Biol. 2000 Dec;75(4):385-407 - PubMed
  16. Genet Sel Evol. 2007 Jul-Aug;39(4):431-46 - PubMed
  17. Fish Physiol Biochem. 1995 Dec;14(6):439-48 - PubMed
  18. Genetics. 1943 Nov;28(6):476-90 - PubMed
  19. Heredity (Edinb). 2010 Jan;104(1):20-7 - PubMed
  20. BMC Evol Biol. 2008 Mar 03;8:76 - PubMed
  21. Evolution. 1996 Oct;50(5):1766-1774 - PubMed
  22. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):15-26 - PubMed
  23. Proc Natl Acad Sci U S A. 1920 Jun;6(6):320-32 - PubMed
  24. Heredity (Edinb). 1999 Aug;83 ( Pt 2):103-9 - PubMed
  25. J Anim Sci. 2007 Dec;85(12):3218-27 - PubMed
  26. Evolution. 1996 Aug;50(4):1392-1403 - PubMed
  27. Evolution. 1979 Mar;33(1Part2):402-416 - PubMed
  28. Genet Res (Camb). 2010 Feb;92(1):1-11 - PubMed
  29. Evolution. 2001 Oct;55(10):1992-2001 - PubMed
  30. Animal. 2008 Sep;2(9):1273-80 - PubMed
  31. Genet Res. 2001 Aug;78(1):31-40 - PubMed
  32. J Evol Biol. 2007 Jan;20(1):87-103 - PubMed
  33. Evol Appl. 2008 May;1(2):222-38 - PubMed
  34. J Anim Sci. 2011 Apr;89(4):959-71 - PubMed
  35. J Anim Sci. 2008 Aug;86(8):1758-64 - PubMed
  36. J Anim Sci. 2010 Apr;88(4):1276-85 - PubMed

Publication Types