Display options
Share it on

Open Orthop J. 2012;6:458-63. doi: 10.2174/1874325001206010458. Epub 2012 Oct 19.

Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

The open orthopaedics journal

Yvonne Haba, Tobias Lindner, Andreas Fritsche, Ann-Kristin Schiebenhöfer, Robert Souffrant, Daniel Kluess, Ralf Skripitz, Wolfram Mittelmeier, Rainer Bader

Affiliations

  1. Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medicine Rostock, Germany.

PMID: 23115606 PMCID: PMC3480807 DOI: 10.2174/1874325001206010458

Abstract

The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

Keywords: Human trabecular bone; bone mineral density; femoral head; mechanical properties.

References

  1. J Biomech. 2004 Apr;37(4):523-30 - PubMed
  2. J Biomed Mater Res. 2001 Apr;55(1):40-4 - PubMed
  3. Med Eng Phys. 1995 Jul;17(5):347-55 - PubMed
  4. J Biomed Mater Res B Appl Biomater. 2006 Jan;76(1):130-5 - PubMed
  5. Bone. 1989;10(6):465-70 - PubMed
  6. Osteoporos Int. 1997;7(5):444-9 - PubMed
  7. Surg Radiol Anat. 2001;23(6):399-407 - PubMed
  8. Zentralbl Chir. 2001 May;126(5):402-6 - PubMed
  9. Physiol Meas. 2005 Apr;26(2):S119-31 - PubMed
  10. Arch Orthop Trauma Surg. 1980;97(2):95-102 - PubMed
  11. Acta Orthop. 2011 Aug;82(4):410-6 - PubMed
  12. J Biomech. 1994 Apr;27(4):375-89 - PubMed
  13. J Biomech. 1993 Aug;26(8):991-1000 - PubMed
  14. J Biomech. 1999 Oct;32(10):1013-20 - PubMed
  15. J Bone Miner Res. 2008 Dec;23(12):1974-82 - PubMed
  16. Arch Orthop Trauma Surg. 2004 Mar;124(2):86-91 - PubMed
  17. J Biomech. 2007;40(11):2426-33 - PubMed
  18. Med Biol Eng. 1974 May;12(3):313-7 - PubMed
  19. J Biomech. 1997 May;30(5):487-95 - PubMed
  20. J Clin Endocrinol Metab. 1999 Jun;84(6):1867-71 - PubMed
  21. J Bone Miner Res. 2006 Mar;21(3):413-8 - PubMed
  22. J Bone Miner Res. 1997 Apr;12(4):641-51 - PubMed
  23. J Orthop Res. 1991 May;9(3):422-31 - PubMed
  24. Clin Orthop Relat Res. 2011 Aug;469(8):2128-38 - PubMed
  25. J Bone Miner Res. 2003 May;18(5):906-12 - PubMed
  26. J Bone Miner Res. 2011 Mar;26(3):460-7 - PubMed
  27. Bone. 2006 Jan;38(1):136-44 - PubMed
  28. Bone. 1999 Dec;25(6):713-24 - PubMed

Publication Types