Display options
Share it on

Genome Integr. 2012 Sep 14;3(1):6. doi: 10.1186/2041-9414-3-6.

Dysfunctional telomeres in primary cells from Fanconi anemia FANCD2 patients.

Genome integrity

Ivana Joksic, Dragana Vujic, Marija Guc-Scekic, Andreja Leskovac, Sandra Petrovic, Maryam Ojani, Juan P Trujillo, Jordi Surralles, Maja Zivkovic, Aleksandra Stankovic, Predrag Slijepcevic, Gordana Joksic

Affiliations

  1. Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia. [email protected].

PMID: 22980747 PMCID: PMC3511208 DOI: 10.1186/2041-9414-3-6

Abstract

BACKGROUND: Fanconi anemia (FA) is characterized by sensitivity to DNA cross-linking agents, mild cellular, and marked clinical radio sensitivity. In this study we investigated telomeric abnormalities of non-immortalized primary cells (lymphocytes and fibroblasts) derived from FA patients of the FA-D2 complementation group, which provides a more accurate physiological assessment than is possible with transformed cells or animal models.

RESULTS: We analyzed telomere length, telomere dysfunction-induced foci (TIFs), sister chromatid exchanges (SCE), telomere sister chromatid exchanges (T-SCE), apoptosis and expression of shelterin components TRF1 and TRF2. FANCD2 lymphocytes exhibited multiple types of telomeric abnormalities, including premature telomere shortening, increase in telomeric recombination and aberrant telomeric structures ranging from fragile to long-string extended telomeres. The baseline incidence of SCE in FANCD2 lymphocytes was reduced when compared to control, but in response to diepoxybutane (DEB) the 2-fold higher rate of SCE was observed. In contrast, control lymphocytes showed decreased SCE incidence in response to DEB treatment. FANCD2 fibroblasts revealed a high percentage of TIFs, decreased expression of TRF1 and invariable expression of TRF2. The percentage of TIFs inversely correlated with telomere length, emphasizing that telomere shortening is the major reason for the loss of telomere capping function. Upon irradiation, a significant decrease of TIFs was observed at all recovery times. Surprisingly, a considerable percentage of TIF positive cells disappeared at the same time when incidence of γ-H2AX foci was maximal. Both FANCD2 leucocytes and fibroblasts appeared to die spontaneously at higher rate than control. This trend was more evident upon irradiation; the percentage of leucocytes underwent apoptosis was 2.59- fold higher than that in control, while fibroblasts exhibited a 2- h delay before entering apoptosis.

CONCLUSION: The results of our study showed that primary cells originating from FA-D2 patients display shorten telomeres, elevated incidence of T-SCEs and high frequency of TIFs. Disappearance of TIFs in early response to irradiation represent distinctive feature of FANCD2 cells that should be examined further.

References

  1. Clin Cancer Res. 2006 Oct 1;12(19):5720-5 - PubMed
  2. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1110-5 - PubMed
  3. Am J Hum Genet. 2007 May;80(5):895-910 - PubMed
  4. Chromosoma. 2012 Aug;121(4):419-31 - PubMed
  5. Blood. 1998 May 15;91(10):3582-92 - PubMed
  6. Mutagenesis. 1996 Mar;11(2):139-44 - PubMed
  7. J Biol Chem. 2008 Aug 29;283(35):23981-8 - PubMed
  8. Curr Biol. 2003 Sep 2;13(17):1549-56 - PubMed
  9. Genome Integr. 2011 Feb 12;2(1):4 - PubMed
  10. Nucleic Acids Res. 2002 May 1;30(9):e36 - PubMed
  11. Br J Haematol. 2003 Mar;120(5):836-45 - PubMed
  12. EMBO Rep. 2011 Dec 23;13(1):52-9 - PubMed
  13. Int J Oncol. 2000 Nov;17(5):981-9 - PubMed
  14. Nature. 1997 Feb 20;385(6618):740-3 - PubMed
  15. Nat Cell Biol. 2005 Jul;7(7):712-8 - PubMed
  16. Annu Rev Genomics Hum Genet. 2008;9:1-19 - PubMed
  17. Methods Cell Sci. 2001;23(1-3):17-22 - PubMed
  18. Blood. 2011 Apr 7;117(14):3759-69 - PubMed
  19. Cell. 1985 Dec;43(2 Pt 1):405-13 - PubMed
  20. Mol Cell Biol. 2000 Mar;20(5):1659-68 - PubMed
  21. Hum Mol Genet. 2002 Feb 15;11(4):439-44 - PubMed
  22. Nat Cell Biol. 2008 Feb;10(2):228-36 - PubMed
  23. Blood. 2006 Jun 1;107(11):4223-33 - PubMed
  24. PLoS Genet. 2009 Jan;5(1):e1000357 - PubMed
  25. J Biol Chem. 1997 Sep 12;272(37):23328-33 - PubMed
  26. Mol Cell Biol. 2009 Jan;29(2):471-82 - PubMed
  27. Nat Genet. 1997 Oct;17(2):231-5 - PubMed
  28. Genes Dev. 2005 Sep 15;19(18):2100-10 - PubMed
  29. Nat Rev Genet. 2005 Aug;6(8):611-22 - PubMed
  30. Cell. 2009 Jul 10;138(1):90-103 - PubMed
  31. Tohoku J Exp Med. 2010 May;221(1):69-76 - PubMed
  32. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6064-8 - PubMed
  33. Cell. 2004 Jul 9;118(1):9-17 - PubMed
  34. Biochem Biophys Res Commun. 2004 Feb 27;315(1):51-8 - PubMed
  35. Nat Struct Mol Biol. 2009 Dec;16(12):1244-51 - PubMed
  36. Nature. 1974 Sep 13;251(5471):156-8 - PubMed
  37. Curr Biol. 2006 Jul 11;16(13):1295-302 - PubMed
  38. Br J Haematol. 1999 Jun;105(4):883-93 - PubMed
  39. Genes Dev. 2007 Jan 15;21(2):206-20 - PubMed
  40. Radiat Res. 2005 Jul;164(1):53-62 - PubMed
  41. Haematologica. 2010 Aug;95(8):1236-40 - PubMed
  42. Mol Cell Biol. 2005 Jan;25(1):34-43 - PubMed
  43. Cell. 2001 Oct 5;107(1):67-77 - PubMed
  44. Nat Cell Biol. 2006 Aug;8(8):885-90 - PubMed
  45. Cell. 1998 Feb 6;92(3):401-13 - PubMed
  46. Radiat Res. 2004 Jan;161(1):82-6 - PubMed
  47. Oncogene. 2001 Mar 22;20(12):1497-508 - PubMed
  48. Nucleic Acids Res. 2009 Apr;37(6):1740-54 - PubMed
  49. J Med Genet. 2007 Apr;44(4):241-9 - PubMed
  50. Nature. 2003 Nov 13;426(6963):194-8 - PubMed
  51. Ann Genet. 1999;42(4):202-9 - PubMed
  52. Cell. 2007 Apr 20;129(2):289-301 - PubMed

Publication Types