Display options
Share it on

Front Hum Neurosci. 2012 Nov 16;6:306. doi: 10.3389/fnhum.2012.00306. eCollection 2012.

Frontal EEG/ERP correlates of attentional processes, cortisol and motivational states in adolescents from lower and higher socioeconomic status.

Frontiers in human neuroscience

Amedeo D'Angiulli, Patricia Maria Van Roon, Joanne Weinberg, Tim F Oberlander, Ruth E Grunau, Clyde Hertzman, Stefania Maggi

Affiliations

  1. Department of Neuroscience, Carleton University Ottawa, ON, Canada ; Institute of Interdisciplinary Studies, Carleton University Ottawa, ON, Canada.

PMID: 23181016 PMCID: PMC3500742 DOI: 10.3389/fnhum.2012.00306

Abstract

Event-related potentials (ERPs) and other electroencephalographic (EEG) evidence show that frontal brain areas of higher and lower socioeconomic status (SES) children are recruited differently during selective attention tasks. We assessed whether multiple variables related to self-regulation (perceived mental effort) emotional states (e.g., anxiety, stress, etc.) and motivational states (e.g., boredom, engagement, etc.) may co-occur or interact with frontal attentional processing probed in two matched-samples of fourteen lower-SES and higher-SES adolescents. ERP and EEG activation were measured during a task probing selective attention to sequences of tones. Pre- and post-task salivary cortisol and self-reported emotional states were also measured. At similar behavioural performance level, the higher-SES group showed a greater ERP differentiation between attended (relevant) and unattended (irrelevant) tones than the lower-SES group. EEG power analysis revealed a cross-over interaction, specifically, lower-SES adolescents showed significantly higher theta power when ignoring rather than attending to tones, whereas, higher-SES adolescents showed the opposite pattern. Significant theta asymmetry differences were also found at midfrontal electrodes indicating left hypo-activity in lower-SES adolescents. The attended vs. unattended difference in right midfrontal theta increased with individual SES rank, and (independently from SES) with lower cortisol task reactivity and higher boredom. Results suggest lower-SES children used additional compensatory resources to monitor/control response inhibition to distracters, perceiving also more mental effort, as compared to higher-SES counterparts. Nevertheless, stress, boredom and other task-related perceived states were unrelated to SES. Ruling out presumed confounds, this study confirms the midfrontal mechanisms responsible for the SES effects on selective attention reported previously and here reflect genuine cognitive differences.

Keywords: EEG asymmetry; EEG power; auditory selective attention; event-related potentials (ERPs); executive control and self-regulation; salivary cortisol; socioeconomic status

References

  1. Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 - PubMed
  2. Ann N Y Acad Sci. 1992 Jul 1;658:65-92 - PubMed
  3. Ann N Y Acad Sci. 2006 Dec;1094:308-12 - PubMed
  4. Brain Res. 2006 Sep 19;1110(1):166-74 - PubMed
  5. Dev Psychobiol. 2002 Jan;40(1):43-56 - PubMed
  6. Front Hum Neurosci. 2012 Aug 17;6:238 - PubMed
  7. Res Aging. 1989 Dec;11(4):403-26 - PubMed
  8. Front Hum Neurosci. 2010 Feb 05;4:3 - PubMed
  9. JAMA. 2009 Jun 3;301(21):2252-9 - PubMed
  10. Hum Factors. 1998 Mar;40(1):79-91 - PubMed
  11. Dev Sci. 2009 Jul;12(4):634-46 - PubMed
  12. Psychophysiology. 1980 Mar;17(2):193-201 - PubMed
  13. Electroencephalogr Clin Neurophysiol. 1997 Jun;102(6):512-6 - PubMed
  14. Trends Cogn Sci. 2009 Feb;13(2):65-73 - PubMed
  15. Behav Brain Funct. 2010 Jul 08;6:39 - PubMed
  16. Hum Brain Mapp. 2006 Nov;27(11):889-95 - PubMed
  17. Child Dev. 2003 Mar-Apr;74(2):456-64 - PubMed
  18. Am Psychol. 2002 May;57(5):341-51 - PubMed
  19. Child Dev. 2005 May-Jun;76(3):554-67 - PubMed
  20. Neuropsychology. 2008 May;22(3):293-300 - PubMed
  21. J Pers Soc Psychol. 1999 Jun;76(6):1008-21 - PubMed
  22. Dev Psychopathol. 2001 Summer;13(3):653-76 - PubMed
  23. Psychophysiology. 1986 Nov;23(6):695-703 - PubMed
  24. Psychol Methods. 2005 Jun;10(2):178-92 - PubMed
  25. Biol Psychiatry. 2000 Nov 15;48(10):976-80 - PubMed
  26. Biol Psychol. 1977 Mar;5(1):47-82 - PubMed
  27. Exp Brain Res. 2006 Apr;170(3):295-301 - PubMed
  28. Annu Rev Psychol. 2007;58:1-23 - PubMed
  29. Nat Rev Neurosci. 2010 Sep;11(9):651-9 - PubMed
  30. Int J Neurosci. 1988 Jul;41(1-2):103-13 - PubMed
  31. J Cogn Neurosci. 2009 Jun;21(6):1106-15 - PubMed
  32. Science. 1973 Oct 12;182(4108):177-80 - PubMed
  33. J Gen Psychol. 2003 Jul;130(3):311-35 - PubMed
  34. Front Hum Neurosci. 2012 Sep 06;6:254 - PubMed
  35. J Exp Child Psychol. 1995 Feb;59(1):1-31 - PubMed
  36. Clin Neurophysiol. 2003 Oct;114(10):1918-25 - PubMed
  37. Neurosci Biobehav Rev. 2010 Jun;34(7):1015-22 - PubMed
  38. Cereb Cortex. 1997 Jun;7(4):374-85 - PubMed
  39. Biol Psychol. 2004 Oct;67(1-2):7-49 - PubMed
  40. Dev Psychobiol. 1999 Nov;35(3):188-96 - PubMed
  41. Biol Psychol. 2004 Oct;67(1-2):77-102 - PubMed
  42. Child Dev Perspect. 2010 Dec;4(3):181-188 - PubMed
  43. Int J Neurosci. 1994 Dec;79(3-4):213-20 - PubMed
  44. J Neurosci Methods. 2004 Mar 15;134(1):9-21 - PubMed
  45. Front Hum Neurosci. 2012 Apr 09;6:76 - PubMed

Publication Types