Display options
Share it on

Front Immunol. 2012 Nov 07;3:329. doi: 10.3389/fimmu.2012.00329. eCollection 2012.

The role of Peyer's patches in synchronizing gut IgA responses.

Frontiers in immunology

Nils Y Lycke, Mats Bemark

Affiliations

  1. Mucosal Immunobiology and Vaccines Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Gothenburg, Sweden.

PMID: 23181060 PMCID: PMC3500999 DOI: 10.3389/fimmu.2012.00329

Abstract

Because Peyer's patches (PP) are the main inductive sites for gut IgA responses we have focused this review on what we know about the function of PP germinal centers (GC). The vast majority of IgA gene sequences in the gut lamina propria (LP) are heavily mutated arguing for an origin in GC. Because PP GC formation is dependent on the presence of CD4 T cells, we speculate that all IgA responses in the normal gut are directly or indirectly T cell-dependent (TD). We hypothesize that the CD4 T cell involvement in gut IgA responses against the microbiota is different from that in systemic responses since cognate T-B cell interactions appear not to be required. In the absence of cognate interactions the function of CD4 follicular helper T cells (Tfh) in PP GC is unclear. However, production of IL-21 and IL-6 is more pronounced than in peripheral lymph nodes. Importantly, we discuss how multiple PP are involved in generating specific IgA responses to TD antigens given orally. Recently we found that oral immunization with NP-hapten conjugated to cholera toxin (NP-CT) stimulated a strong highly synchronized, oligoclonal and affinity matured IgA response. This was achieved through re-utilization of GC in multiple PP as GC IgA B cells emigrated into already established GC. Clonally related B cells were present in both inductive and effector lymphoid tissues in the gut and clonal trees involving multiple PP could be constructed in individual mice. Through adoptive transfer of B1-8(hi) NP-specific B cells we demonstrated that GL7(+) PP B cells could enter into pre-existing GC in PP, a process that was antigen-dependent but did not to require cognate Tfh interactions. Finally, we discuss the role of PP GC for the generation of memory B cells and long-lived plasma cells in the light of contrasting findings regarding IgA memory development to colonizing commensal bacteria versus that to oral immunization with enteropathogens or TD antigens.

Keywords: B cells; Peyer’s patches; cholera toxin; germinal center re-utilization; germinal centers; gut IgA

References

  1. J Exp Med. 1998 Nov 2;188(9):1679-89 - PubMed
  2. J Exp Med. 2007 Sep 3;204(9):2103-14 - PubMed
  3. Science. 2000 Jun 23;288(5474):2222-6 - PubMed
  4. Infect Immun. 2009 Sep;77(9):3850-6 - PubMed
  5. Mucosal Immunol. 2013 Jan;6(1):122-35 - PubMed
  6. J Exp Med. 2012 Feb 13;209(2):365-77 - PubMed
  7. Vaccine. 2010 Jul 26;28(33):5445-50 - PubMed
  8. J Clin Invest. 2011 May;121(5):1946-55 - PubMed
  9. J Exp Med. 2009 Dec 21;206(13):2907-14 - PubMed
  10. Science. 1998 Jul 3;281(5373):96-9 - PubMed
  11. Immunol Rev. 2007 Apr;216:130-41 - PubMed
  12. J Immunol. 2011 Feb 1;186(3):1399-410 - PubMed
  13. Nature. 2007 Mar 1;446(7131):83-7 - PubMed
  14. Immunology. 2010 Jun;130(2):166-71 - PubMed
  15. Nat Immunol. 2004 Mar;5(3):317-27 - PubMed
  16. Immunity. 2009 Jan 16;30(1):120-9 - PubMed
  17. Science. 2009 Mar 13;323(5920):1488-92 - PubMed
  18. Eur J Immunol. 2009 Aug;39(8):2065-75 - PubMed
  19. Infect Immun. 1989 Apr;57(4):1137-41 - PubMed
  20. Gastroenterology. 2011 Mar;140(3):947-56 - PubMed
  21. Science. 2010 Jun 25;328(5986):1705-9 - PubMed
  22. Immunology. 2010 Mar;129(3):427-36 - PubMed
  23. J Immunol. 2010 Apr 1;184(7):3545-53 - PubMed
  24. Immunol Lett. 2011 Dec 30;141(1):109-15 - PubMed
  25. J Leukoc Biol. 2009 May;85(5):739-43 - PubMed
  26. Int Immunol. 1996 May;8(5):737-44 - PubMed
  27. J Immunol. 1995 Jul 15;155(2):556-67 - PubMed
  28. Immunol Rev. 2012 May;247(1):52-63 - PubMed
  29. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):1166-70 - PubMed
  30. Mucosal Immunol. 2008 Jan;1(1):11-22 - PubMed
  31. Proc R Soc Med. 1965 Sep;58(9):716 - PubMed
  32. Immunity. 1994 Aug;1(5):423-31 - PubMed
  33. Nat Rev Immunol. 2006 Oct;6(10):785-90 - PubMed
  34. Ann N Y Acad Sci. 2012 Jan;1247:97-116 - PubMed
  35. Immunity. 2007 Aug;27(2):190-202 - PubMed
  36. Cell. 1991 Dec 20;67(6):1121-9 - PubMed
  37. Nat Rev Immunol. 2012 Jul 25;12(8):592-605 - PubMed
  38. Scand J Immunol. 1987 Apr;25(4):407-12 - PubMed
  39. J Exp Med. 1999 Apr 19;189(8):1169-80 - PubMed
  40. Immunity. 2002 Sep;17(3):329-39 - PubMed
  41. Science. 2012 Apr 27;336(6080):485-9 - PubMed
  42. J Immunol. 1998 Oct 15;161(8):4227-35 - PubMed
  43. Annu Rev Immunol. 2010;28:243-73 - PubMed
  44. J Immunol. 1995 Mar 1;154(5):2051-62 - PubMed
  45. J Immunol. 2006 Dec 1;177(11):7772-83 - PubMed
  46. Mucosal Immunol. 2008 May;1(3):172-4 - PubMed
  47. J Leukoc Biol. 2009 May;85(5):744-50 - PubMed
  48. Immunity. 1994 Jun;1(3):167-78 - PubMed
  49. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8664-9 - PubMed
  50. Ann N Y Acad Sci. 2004 Dec;1029:9-15 - PubMed
  51. Nat Immunol. 2011 Mar;12(3):264-70 - PubMed
  52. Cell. 2009 Oct 30;139(3):485-98 - PubMed
  53. J Immunol. 2010 Nov 1;185(9):5377-83 - PubMed
  54. Cell. 2010 Nov 12;143(4):592-605 - PubMed
  55. J Gen Virol. 2001 Sep;82(Pt 9):2271-2274 - PubMed
  56. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10638-43 - PubMed
  57. Immunobiology. 2013 Feb;218(2):152-8 - PubMed

Publication Types