Display options
Share it on

Front Plant Sci. 2012 Oct 29;3:236. doi: 10.3389/fpls.2012.00236. eCollection 2012.

Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling.

Frontiers in plant science

Olaf Czarnecki, Christine Gläßer, Jin-Gui Chen, Klaus F X Mayer, Bernhard Grimm

Affiliations

  1. Department of Plant Physiology, Institute of Biology, Humboldt-Universität zu Berlin Berlin, Germany ; Plant Systems Biology, Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA.

PMID: 23112801 PMCID: PMC3483025 DOI: 10.3389/fpls.2012.00236

Abstract

The formation of 5-aminolevulinic acid (ALA) in tetrapyrrole biosynthesis is widely controlled by environmental and metabolic feedback cues that determine the influx into the entire metabolic path. Because of its central role as the rate-limiting step, we hypothesized a potential role of ALA biosynthesis in tetrapyrrole-mediated retrograde signaling and exploited the direct impact of ALA biosynthesis on nuclear gene expression (NGE) by using two different approaches. Firstly, the Arabidopsisgun1, hy1 (gun2), hy2 (gun3), gun4 mutants showing uncoupled NGE from the physiological state of chloroplasts were thoroughly examined for regulatory modifications of ALA synthesis and transcriptional control in the nucleus. We found that reduced ALA-synthesizing capacity is common to analyzed gun mutants. Inhibition of ALA synthesis by gabaculine (GAB) that inactivates glutamate-1-semialdehyde aminotransferase and ALA feeding of wild-type and mutant seedlings corroborate the expression data of gun mutants. Transcript level of photosynthetic marker genes were enhanced in norflurazon (NF)-treated seedlings upon additional GAB treatment, while enhanced ALA amounts diminish these RNA levels in NF-treated wild-type in comparison to the solely NF-treated seedlings. Secondly, the impact of posttranslationally down-regulated ALA synthesis on NGE was investigated by global transcriptome analysis of GAB-treated Arabidopsis seedlings and the gun4-1 mutant, which is also characterized by reduced ALA formation. A common set of significantly modulated genes was identified indicating ALA synthesis as a potential signal emitter. The over-represented gene ontology categories of genes with decreased or increased transcript abundance highlight a few biological processes and cellular functions, which are remarkably affected in response to plastid-localized ALA biosynthesis. These results support the hypothesis that ALA biosynthesis correlates with retrograde signaling-mediated control of NGE.

Keywords: ALA synthesis; gabaculine; gun mutants; microarray analysis; retrograde signaling

References

  1. Science. 2007 May 4;316(5825):715-9 - PubMed
  2. J Am Chem Soc. 1948 Nov;70(11):3558-62 - PubMed
  3. Planta. 2001 May;213(1):101-8 - PubMed
  4. Plant Cell. 2007 Dec;19(12):3944-60 - PubMed
  5. Genome Biol. 2004;5(10):R80 - PubMed
  6. Bioinformatics. 2005 Aug 15;21(16):3448-9 - PubMed
  7. Plant Cell. 1989 Sep;1(9):867-880 - PubMed
  8. Trends Plant Sci. 2008 Nov;13(11):602-9 - PubMed
  9. Stat Appl Genet Mol Biol. 2004;3:Article3 - PubMed
  10. Biochem Soc Trans. 1990 Aug;18(4):656-7 - PubMed
  11. Plant Cell Physiol. 2010 Jul;51(7):1229-41 - PubMed
  12. J Biol Chem. 1984 Nov 10;259(21):13541-9 - PubMed
  13. Plant J. 2000 Dec;24(6):883-94 - PubMed
  14. Science. 2003 Feb 7;299(5608):902-6 - PubMed
  15. Mol Cell. 2007 Oct 26;28(2):337-50 - PubMed
  16. Plant Physiol. 1995 Aug;108(4):1505-17 - PubMed
  17. Physiol Plant. 2010 Apr;138(4):503-19 - PubMed
  18. Plant Physiol. 2000 Apr;122(4):1161-9 - PubMed
  19. Annu Rev Plant Biol. 2007;58:321-46 - PubMed
  20. Annu Rev Plant Biol. 2006;57:739-59 - PubMed
  21. J Biol Chem. 1991 Jul 5;266(19):12495-501 - PubMed
  22. Mol Plant. 2009 Nov;2(6):1198-210 - PubMed
  23. Trends Genet. 2009 Apr;25(4):185-92 - PubMed
  24. J Exp Bot. 2005 Jun;56(416):1449-62 - PubMed
  25. Methods Mol Biol. 2011;775:357-85 - PubMed
  26. FEBS Lett. 2012 Feb 3;586(3):211-6 - PubMed
  27. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):135-44; discussion 144-5 - PubMed
  28. Curr Biol. 2011 May 24;21(10):897-903 - PubMed
  29. Plant Physiol. 2010 Feb;152(2):453-9 - PubMed
  30. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12826-31 - PubMed
  31. Biostatistics. 2003 Apr;4(2):249-64 - PubMed
  32. J Biol Chem. 1956 Mar;219(1):435-46 - PubMed
  33. Antioxid Redox Signal. 2003 Feb;5(1):95-101 - PubMed
  34. J Plant Physiol. 2010 Jun 15;167(9):693-700 - PubMed
  35. Plant Cell Physiol. 2010 May;51(5):670-81 - PubMed
  36. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):803-7 - PubMed
  37. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14168-72 - PubMed
  38. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2053-8 - PubMed
  39. Cell. 1993 Sep 10;74(5):787-99 - PubMed
  40. Nat Rev Genet. 2004 Feb;5(2):123-35 - PubMed
  41. Nat Genet. 2000 May;25(1):25-9 - PubMed
  42. Photosynth Res. 2004;82(3):289-99 - PubMed
  43. Biosci Rep. 1985 Sep;5(9):775-81 - PubMed
  44. FEBS Lett. 2002 Dec 4;532(1-2):27-30 - PubMed
  45. Annu Rev Plant Biol. 2004;55:373-99 - PubMed
  46. EMBO Rep. 2008 May;9(5):435-9 - PubMed
  47. Nucleic Acids Res. 2007 Jan;35(Database issue):D213-8 - PubMed
  48. Nature. 2003 Jan 2;421(6918):79-83 - PubMed
  49. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15178-83 - PubMed
  50. Plant J. 2000 Apr;22(2):155-64 - PubMed
  51. Methods. 2001 Dec;25(4):402-8 - PubMed
  52. EMBO J. 1990 Jun;9(6):1717-26 - PubMed
  53. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15184-9 - PubMed
  54. Photosynth Res. 2002;71(3):185-94 - PubMed
  55. Plant J. 1993 Oct;4(4):611-9 - PubMed
  56. Trends Plant Sci. 2010 Aug;15(8):427-35 - PubMed
  57. Plant Cell. 2003 Oct;15(10):2320-32 - PubMed
  58. Plant J. 2005 Jan;41(2):282-90 - PubMed
  59. Plant Mol Biol. 2009 Nov;71(4-5):425-36 - PubMed
  60. Plant Cell. 2011 Dec;23(12):4476-91 - PubMed
  61. Plant Cell. 2002;14 Suppl:S327-38 - PubMed
  62. Planta. 2001 Sep;213(5):667-81 - PubMed

Publication Types