Display options
Share it on

Front Plant Sci. 2012 Oct 29;3:241. doi: 10.3389/fpls.2012.00241. eCollection 2012.

Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis).

Frontiers in plant science

Ruth Grene, Curtis Klumas, Haktan Suren, Kuan Yang, Eva Collakova, Elijah Myers, Lenwood S Heath, Jason A Holliday

Affiliations

  1. Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech Blacksburg, VA, USA.

PMID: 23112803 PMCID: PMC3482696 DOI: 10.3389/fpls.2012.00241

Abstract

Microarray gene expression profiling is a powerful technique to understand complex developmental processes, but making biologically meaningful inferences from such studies has always been challenging. We previously reported a microarray study of the freezing acclimation period in Sitka spruce (Picea sitchensis) in which a large number of candidate genes for climatic adaptation were identified. In the current paper, we apply additional systems biology tools to these data to further probe changes in the levels of genes and metabolites and activities of associated pathways that regulate this complex developmental transition. One aspect of this adaptive process that is not well understood is the role of the cell wall. Our data suggest coordinated metabolic and signaling responses leading to cell wall remodeling. Co-expression of genes encoding proteins associated with biosynthesis of structural and non-structural cell wall carbohydrates was observed, which may be regulated by ethylene signaling components. At the same time, numerous genes, whose products are putatively localized to the endomembrane system and involved in both the synthesis and trafficking of cell wall carbohydrates, were up-regulated. Taken together, these results suggest a link between ethylene signaling and biosynthesis, and targeting of cell wall related gene products during the period of winter hardening. Automated Layout Pipeline for Inferred NEtworks (ALPINE), an in-house plugin for the Cytoscape visualization environment that utilizes the existing GeneMANIA and Mosaic plugins, together with the use of visualization tools, provided images of proposed signaling processes that became active over the time course of winter hardening, particularly at later time points in the process. The resulting visualizations have the potential to reveal novel, hypothesis-generating, gene association patterns in the context of targeted subcellular location.

Keywords: Sitka spruce; adaptation mechanisms; carbon metabolism; cell walls; microarray; visualization

References

  1. Plant Physiol. 2012 Mar;158(3):1172-92 - PubMed
  2. Arabidopsis Book. 2008;6:e0116 - PubMed
  3. Plant J. 2010 Dec;64(6):977-89 - PubMed
  4. Plant Mol Biol. 2006 Jan;60(2):241-57 - PubMed
  5. Plant Physiol. 2010 Jan;152(1):226-44 - PubMed
  6. Philos Trans R Soc Lond B Biol Sci. 2002 Jul 29;357(1423):831-47 - PubMed
  7. Annu Rev Plant Biol. 2007;58:137-61 - PubMed
  8. Plant Signal Behav. 2010 Apr;5(4):473-5 - PubMed
  9. Plant Physiol. 2003 Jun;132(2):893-906 - PubMed
  10. Front Plant Sci. 2012 Apr 30;3:79 - PubMed
  11. Plant Cell Rep. 2008 Apr;27(4):655-66 - PubMed
  12. Plant Cell. 2008 Jan;20(1):59-74 - PubMed
  13. Plant J. 2003 Jul;35(1):44-56 - PubMed
  14. Plant Cell Environ. 2009 Sep;32(9):1211-29 - PubMed
  15. Bioinformatics. 2002;18 Suppl 1:S96-104 - PubMed
  16. Bioinformatics. 2010 Nov 15;26(22):2927-8 - PubMed
  17. New Phytol. 2008;178(1):103-122 - PubMed
  18. J Plant Physiol. 2010 Feb 15;167(3):194-200 - PubMed
  19. Plant Cell Environ. 2012 Apr;35(4):682-701 - PubMed
  20. Nat Genet. 2000 May;25(1):25-9 - PubMed
  21. Tree Physiol. 2006 Oct;26(10):1297-313 - PubMed
  22. Plant Cell. 2000 Mar;12(3):393-404 - PubMed
  23. Plant J. 2010 Dec;64(6):1028-37 - PubMed
  24. Plant Mol Biol. 2009 Sep;71(1-2):61-80 - PubMed
  25. Plant J. 2001 Aug;27(4):325-33 - PubMed
  26. Plant Cell. 2004 Mar;16(3):723-30 - PubMed
  27. Bioinformatics. 2012 Jul 15;28(14):1943-4 - PubMed
  28. Plant Physiol. 2005 Oct;139(2):949-59 - PubMed
  29. Plant J. 2011 Apr;66(2):268-79 - PubMed
  30. Mol Syst Biol. 2011 Sep 27;7:532 - PubMed
  31. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  32. J Biol Chem. 2003 Dec 5;278(49):49102-12 - PubMed
  33. New Phytol. 2012 Apr;194(1):192-205 - PubMed
  34. Plant J. 2007 May;50(4):557-73 - PubMed
  35. Curr Opin Biotechnol. 2012 Jun;23(3):330-7 - PubMed
  36. Physiol Plant. 2009 May;136(1):94-109 - PubMed
  37. Science. 2006 May 19;312(5776):1040-3 - PubMed
  38. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  39. Plant Cell. 2005 Jun;17(6):1764-76 - PubMed
  40. Trends Plant Sci. 2007 May;12(5):217-23 - PubMed
  41. Science. 1970 Sep 25;169(3952):1269-78 - PubMed
  42. Plant Cell Physiol. 2006 Dec;47(12):1603-11 - PubMed
  43. Plant Cell. 2001 Aug;13(8):1959-68 - PubMed
  44. Plant Cell. 2007 Aug;19(8):2370-90 - PubMed
  45. PLoS One. 2010 Nov 23;5(11):e15481 - PubMed
  46. Bioinformatics. 2008 Jul 15;24(14):1650-1 - PubMed
  47. Plant J. 2010 May 1;62(4):674-88 - PubMed
  48. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 - PubMed
  49. Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10 - PubMed
  50. Mol Plant. 2010 Sep;3(5):890-903 - PubMed
  51. Plant Signal Behav. 2011 Jun;6(6):855-7 - PubMed
  52. Annu Rev Plant Biol. 2005;56:165-85 - PubMed
  53. Plant Cell Physiol. 2009 Apr;50(4):812-27 - PubMed
  54. Plant Physiol. 2012 May;159(1):12-26 - PubMed

Publication Types