Display options
Share it on

Nat Commun. 2012;3:1266. doi: 10.1038/ncomms2277.

Growth and optical properties of axial hybrid III-V/silicon nanowires.

Nature communications

Moïra Hocevar, George Immink, Marcel Verheijen, Nika Akopian, Val Zwiller, Leo Kouwenhoven, Erik Bakkers

Affiliations

  1. Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands.

PMID: 23232396 DOI: 10.1038/ncomms2277

Abstract

Hybrid silicon nanowires with an integrated light-emitting segment can significantly advance nanoelectronics and nanophotonics. They would combine transport and optical characteristics in a nanoscale device, which can operate in the fundamental single-electron and single-photon regime. III-V materials, such as direct bandgap gallium arsenide, are excellent candidates for such optical segments. However, interfacing them with silicon during crystal growth is a major challenge, because of the lattice mismatch, different expansion coefficients and the formation of antiphase boundaries. Here we demonstrate a silicon nanowire with an integrated gallium-arsenide segment. We precisely control the catalyst composition and surface chemistry to obtain dislocation-free interfaces. The integration of gallium arsenide of high optical quality with silicon is enabled by short gallium phosphide buffers. We anticipate that such hybrid silicon/III-V nanowires open practical routes for quantum information devices, where for instance electronic and photonic quantum bits are manipulated in a III-V segment and stored in a silicon section.

References

  1. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12212-6 - PubMed
  2. J Am Chem Soc. 2006 Feb 1;128(4):1353-9 - PubMed
  3. Science. 1993 Apr 2;260(5104):40-6 - PubMed
  4. Science. 2009 Nov 27;326(5957):1247-50 - PubMed
  5. Nat Nanotechnol. 2011 Dec 18;7(1):47-50 - PubMed
  6. Nature. 2011 Nov 16;479(7373):317-23 - PubMed
  7. Nano Lett. 2009 Jan;9(1):173-7 - PubMed
  8. Nano Lett. 2010 Apr 14;10(4):1198-201 - PubMed
  9. Nano Lett. 2009 Sep;9(9):3151-6 - PubMed
  10. Nano Lett. 2010 Oct 13;10(10):4032-9 - PubMed
  11. Nature. 2011 Nov 16;479(7373):329-37 - PubMed
  12. Nano Lett. 2008 Nov;8(11):3755-60 - PubMed
  13. Science. 2001 Feb 2;291(5505):851-3 - PubMed
  14. Nano Lett. 2011 Apr 13;11(4):1690-4 - PubMed
  15. Nat Nanotechnol. 2007 Sep;2(9):541-4 - PubMed
  16. Nature. 2012 Jan 18;481(7381):344-7 - PubMed
  17. Nature. 2010 Dec 23;468(7327):1084-7 - PubMed
  18. Nano Lett. 2011 Mar 9;11(3):1259-64 - PubMed
  19. Nano Lett. 2007 Jun;7(6):1817-22 - PubMed
  20. Nano Lett. 2011 Feb 9;11(2):316-20 - PubMed

Publication Types