Display options
Share it on

Front Physiol. 2012 Dec 07;3:461. doi: 10.3389/fphys.2012.00461. eCollection 2012.

The arterial baroreflex resets with orthostasis.

Frontiers in physiology

Christopher E Schwartz, Julian M Stewart

Affiliations

  1. Department of Physiology, The Center for Hypotension, New York Medical College Valhalla, NY, USA ; Department of Pediatrics, The Center for Hypotension, New York Medical College Valhalla, NY, USA.

PMID: 23233840 PMCID: PMC3516802 DOI: 10.3389/fphys.2012.00461

Abstract

The arterial baroreflexes, located in the carotid sinus and along the arch of the aorta, are essential for the rapid short term autonomic regulation of blood pressure. In the past, they were believed to be inactivated during exercise because blood pressure, heart rate, and sympathetic activity were radically changed from their resting functional relationships with blood pressure. However, it was discovered that all relationships between carotid sinus pressure and either HR or sympathetic vasoconstriction maintained their curvilinear sigmoidal shape but were reset or shifted so as to best defend BP during exercise. To determine whether resetting also occurs during orthostasis, we examined the arterial baroreflexes measured supine and upright tilt. We studied the relationships between systolic BP and HR (the cardiovagal baroreflex), mean BP, and ventilation (the ventilatory baroreflex) and diastolic BP and sympathetic nerve activity (the sympathetic baroreflex). We accomplished these measurements by using the modified Oxford method in which BP was rapidly varied with bolus injections of sodium nitroprusside followed 1 min later by bolus injections of phenylephrine. Both the cardiovagal and ventilatory baroreflexes were "reset" with no change in gain or response range. In contrast, the sympathetic baroreflex was augmented as well as shifted causing an increase in peripheral resistance that improved the subjects' defense against hypotension. This contrasts with findings during exercise in which peripheral resistance in active skeletal muscle is not increased. This difference is likely selective for exercising muscle and may represent the actions of functional sympatholysis by which exercise metabolites interfere with adrenergic vasoconstriction.

Keywords: cardiovascular regulation; heart rate; standing; sympathetic nerve activity; ventilation

References

  1. Am J Physiol. 1993 Dec;265(6 Pt 2):H1928-38 - PubMed
  2. Physiol Rev. 1955 Apr;35(2):247-300 - PubMed
  3. Hypertension. 2003 Oct;42(4):481-7 - PubMed
  4. J Clin Invest. 1985 Oct;76(4):1592-8 - PubMed
  5. J Physiol. 2011 Jun 15;589(Pt 12):2935-43 - PubMed
  6. J Appl Physiol. 1975 Sep;39(3):411-6 - PubMed
  7. Clin Auton Res. 2011 Apr;21(2):69-72 - PubMed
  8. Am J Physiol Heart Circ Physiol. 2000 Sep;279(3):H1215-9 - PubMed
  9. J Pediatr. 1993 Jun;122(6):S89-94 - PubMed
  10. J Physiol. 2007 Sep 15;583(Pt 3):1041-8 - PubMed
  11. J Physiol. 2005 Mar 15;563(Pt 3):925-43 - PubMed
  12. Pflugers Arch. 1969;313(1):1-10 - PubMed
  13. Clin Sci (Lond). 1999 Sep;97(3):291-301 - PubMed
  14. J Physiol. 1996 Mar 15;491 ( Pt 3):881-7 - PubMed
  15. J Physiol. 1978 Jan;274:621-37 - PubMed
  16. J Appl Physiol Respir Environ Exerc Physiol. 1979 Sep;47(3):503-7 - PubMed
  17. Acta Physiol Scand. 1972 Jan;84(1):65-81 - PubMed
  18. Exerc Sport Sci Rev. 1997;25:365-89 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1492-500 - PubMed
  20. J Physiol. 1939 May 15;95(4):454-63 - PubMed
  21. J Physiol. 1977 Nov;272(2):399-414 - PubMed
  22. Physiol Rev. 1979 Oct;59(4):919-57 - PubMed
  23. Cardiovasc Res. 2010 Jul 15;87(2):198-210 - PubMed
  24. J Physiol. 2003 Oct 1;552(Pt 1):295-302 - PubMed
  25. Stroke. 1998 Sep;29(9):1876-81 - PubMed
  26. Cardiology. 1972;57(5):295-310 - PubMed
  27. Am J Physiol Heart Circ Physiol. 2009 May;296(5):H1416-24 - PubMed
  28. J Physiol. 2002 Jun 1;541(Pt 2):623-35 - PubMed
  29. Exp Physiol. 2012 Jan;97(1):39-50 - PubMed
  30. Am J Physiol. 1981 Dec;241(6):H838-49 - PubMed
  31. Am J Physiol. 1970 Apr;218(4):1030-7 - PubMed
  32. Am J Physiol. 1989 Nov;257(5 Pt 2):H1389-95 - PubMed
  33. Circulation. 2002 Oct 29;106(18):2358-65 - PubMed
  34. Europace. 2010 Apr;12(4):561-6 - PubMed
  35. J Appl Physiol (1985). 1999 Jul;87(1):332-8 - PubMed
  36. Circ Res. 1970 Feb;26(2):185-99 - PubMed
  37. Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1383-90 - PubMed
  38. Exp Physiol. 2001 Sep;86(5):677-81 - PubMed
  39. J Clin Invest. 1960 Jul;39:1051-61 - PubMed
  40. Monaldi Arch Chest Dis. 1999 Aug;54(4):365-72 - PubMed
  41. Circ Res. 1975 Feb;36(2):270-6 - PubMed
  42. Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E85-91 - PubMed
  43. Circulation. 2001 Nov 27;104(22):2694-8 - PubMed
  44. J Appl Physiol (1985). 1990 Dec;69(6):1961-72 - PubMed
  45. Brain Res. 1975 Mar 14;86(1):168-71 - PubMed
  46. Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H904-13 - PubMed
  47. J Physiol. 2009 May 1;587(Pt 9):2019-31 - PubMed
  48. J Physiol. 2006 Dec 1;577(Pt 2):679-87 - PubMed
  49. Ann Surg. 1954 Dec;140(6):786-95 - PubMed
  50. Circulation. 2004 Nov 2;110(18):2931-7 - PubMed
  51. Clin Sci (Lond). 2007 Feb;112(3):157-65 - PubMed
  52. Am J Physiol Regul Integr Comp Physiol. 2005 May;288(5):R1339-46 - PubMed
  53. Clin Auton Res. 1994 Apr;4(1-2):41-7 - PubMed
  54. Int J Clin Pract. 2007 Apr;61(4):695; author reply 695-6 - PubMed
  55. Circulation. 1988 Feb;77(2):279-88 - PubMed

Publication Types

Grant support