Display options
Share it on

J Venom Res. 2012;3:7-14. Epub 2012 Oct 23.

Mass landscapes of seven scorpion species: The first analyses of Australian species with 1,5-DAN matrix.

Journal of venom research

Jennifer J Smith, Alun Jones, Paul F Alewood

Affiliations

  1. Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.

PMID: 23236582 PMCID: PMC3518322

Abstract

Scorpion venoms have been studied for over fifty years; however, the majority of research has focussed primarily on medically important Buthidae species. Additionally, venoms of the estimated 200 species of scorpion native to Australia have received very little attention. The first venom mass profiles of six non-buthid and one buthid scorpion species are presented herein, four of which are endemic to Australia. While masses under 5 kDa dominated the venoms of all species, the buthid venom contained considerably more masses between 7 and 8 kDa than those of the non-buthids, corroborating the emergent trend that buthids are richer in long-chain neurotoxins than non-buthids. The Australian scorpion venom fractions were also analysed with the relatively new MALDI-ToF matrix 1,5-DAN. Over forty partial sequences were obtained, the majority of which are homologous to scorpion antimicrobials such as opistoporin and IsCT2. Overall, this study is the single most comprehensive mass spectrometric analysis of scorpion venom landscapes to date and provides an insight into untapped Australian species.

Keywords: mass landscapes; mass spectrometry; scorpion venom

References

  1. Toxicon. 2004 Jun 15;43(8):865-75 - PubMed
  2. Proteomics. 2010 Jul;10(13):2471-85 - PubMed
  3. BMC Genomics. 2009 Jul 01;10:290 - PubMed
  4. Inflamm Allergy Drug Targets. 2011 Oct;10(5):411-9 - PubMed
  5. Proteomics. 2006 Jun;6(12):3718-27 - PubMed
  6. Biochemistry. 2012 May 15;51(19):4049-61 - PubMed
  7. J Mass Spectrom. 2008 Mar;43(3):279-95 - PubMed
  8. Toxicon. 2010 Dec 15;56(7):1155-61 - PubMed
  9. IUBMB Life. 2005 Jan;57(1):13-21 - PubMed
  10. BMC Genomics. 2007 May 16;8:119 - PubMed
  11. Toxicon. 2008 Oct;52(5):611-8 - PubMed
  12. Toxicon. 2005 Dec 15;46(8):831-44 - PubMed
  13. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):922-7 - PubMed
  14. J Toxicol Clin Toxicol. 2003;41(3):291-300 - PubMed
  15. Toxicon. 1991;29(8):951-60 - PubMed
  16. Toxicon. 2010 Feb-Mar;55(2-3):180-5 - PubMed
  17. Toxicon. 2012 Mar 1;59(3):408-15 - PubMed
  18. Toxicon. 1987;25(5):569-73 - PubMed
  19. J Am Soc Mass Spectrom. 2003 Sep;14(9):971-9 - PubMed
  20. J Mass Spectrom. 2006 Feb;41(2):191-201 - PubMed
  21. Toxicon. 2009 Mar 1;53(3):349-59 - PubMed
  22. J Proteome Res. 2007 Aug;6(8):3216-23 - PubMed
  23. Rapid Commun Mass Spectrom. 2007;21(21):3467-76 - PubMed
  24. Toxicon. 2005 Mar 1;45(3):273-83 - PubMed
  25. J Proteomics. 2009 Mar 6;72(2):165-82 - PubMed
  26. Intern Med J. 2004 Jul;34(7):427-30 - PubMed
  27. J Chromatogr A. 2009 Mar 20;1216(12):2424-32 - PubMed
  28. Biochimie. 2010 Dec;92(12):1847-53 - PubMed
  29. Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10478-83 - PubMed
  30. Proteomics. 2012 Jan;12(2):313-28 - PubMed
  31. BMC Genomics. 2010 Jul 28;11:452 - PubMed
  32. J Mass Spectrom. 2012 Feb;47(2):180-7 - PubMed
  33. Rapid Commun Mass Spectrom. 2001;15(17):1562-72 - PubMed
  34. Toxicon. 2012 Sep 15;60(4):551-7 - PubMed

Publication Types