Display options
Share it on

J Med Device. 2012 Sep;6(3):31005-31012. doi: 10.1115/1.4007182.

Simulation Based Design and Evaluation of a Transcatheter Mitral Heart Valve Frame.

Journal of medical devices

Melissa Young, Ahmet Erdemir, Samantha Stucke, Ryan Klatte, Brian Davis, Jose L Navia

Affiliations

  1. Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA ; Medical Device Solutions (MDS) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

PMID: 23372624 PMCID: PMC3557846 DOI: 10.1115/1.4007182

Abstract

In certain populations, open heart surgery to replace a diseased mitral valve is not an option, leaving percutaneous delivery a viable alternative. However, a surgical transcatheter based delivery of a metallic support frame incorporating a tissue derived valve puts considerable constraints on device specifications. Expansion to a large diameter from the catheter diameter without mechanical fracture involves advanced device design and appropriate material processing and selection. In this study, a new frame concept is presented with a desirable feature that incorporates wings that protrude during expansion to establish adequate fixation. Expansion characteristics of the design in relation to annulus fixation were quantified through finite element analysis predictions of the frame wing span and angles. Computational modeling and simulation was used to identify many favorable design features for the transcatheter mitral valve frame and obtain desired expansion diameters (35-45mm), acceptable radial stiffness (2.7N/mm), and ensure limited risk of failure based on predicted plastic deformations.

References

  1. JAMA. 1993 Oct 13;270(14):1731-6 - PubMed
  2. J Biomed Mater Res. 1999 Dec 5;47(3):301-8 - PubMed
  3. Herz. 2012 Mar;37(2):172-82 - PubMed
  4. Eur J Cardiothorac Surg. 2009 Jul;36(1):124-8; discussion 128 - PubMed
  5. Med Eng Phys. 1994 Nov;16(6):526-30 - PubMed
  6. Minim Invasive Ther Allied Technol. 2011 Apr;20(2):78-84 - PubMed
  7. J Am Soc Echocardiogr. 2011 Jul;24(7):707-19 - PubMed
  8. Eur Heart J. 2007 Jun;28(11):1358-65 - PubMed
  9. J Thorac Cardiovasc Surg. 2010 Aug;140(2):422-426.e1 - PubMed
  10. Eur J Cardiothorac Surg. 2009 Jun;35(6):965-9; discussion 969 - PubMed
  11. J Am Coll Cardiol. 2008 Aug 19;52(8):676-85 - PubMed
  12. Circulation. 2006 Aug 1;114(5):377-80 - PubMed
  13. Eur J Cardiothorac Surg. 1995;9(11):621-6 discuss 626-7 - PubMed
  14. Eur J Cardiothorac Surg. 2012 Sep;42(3):493-9 - PubMed
  15. Circulation. 2001 Nov 20;104(21):2525-32 - PubMed
  16. J Heart Valve Dis. 2000 Jul;9(4):530-5 - PubMed
  17. J Thorac Cardiovasc Surg. 2005 Sep;130(3):783-90 - PubMed
  18. Cardiovasc Ultrasound. 2007 Mar 14;5:14 - PubMed
  19. N Engl J Med. 2011 Apr 14;364(15):1395-406 - PubMed
  20. Circulation. 2011 Jan 25;123(3):299-308 - PubMed
  21. Heart. 2006 Oct;92(10):1369-72 - PubMed
  22. Echocardiography. 2011 Apr;28(4):461-7 - PubMed
  23. Circ Cardiovasc Imaging. 2011 Jan;4(1):24-32 - PubMed
  24. Circulation. 1981 Jul;64(1):113-20 - PubMed
  25. Int J Cardiovasc Imaging. 2012 Jan;28(1):59-67 - PubMed
  26. Ann Biomed Eng. 2012 Jul;40(7):1455-67 - PubMed

Publication Types

Grant support