Display options
Share it on

Ecol Evol. 2012 Jan;3(1):1-17. doi: 10.1002/ece3.421. Epub 2012 Nov 23.

Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex.

Ecology and evolution

Rebecca C Jones, Dorothy A Steane, Martyn Lavery, René E Vaillancourt, Brad M Potts

Affiliations

  1. School of Plant Science, University of Tasmania Private Bag 55, Hobart, Tasmania, 7001, Australia ; CRC for Forestry Private Bag 12, Hobart, Tasmania, 7001, Australia.

PMID: 23403692 PMCID: PMC3568837 DOI: 10.1002/ece3.421

Abstract

Forest trees frequently form species complexes, complicating taxonomic classification and gene pool management. This is certainly the case in Eucalyptus, and well exemplified by the Eucalyptus globulus complex. This ecologically and economically significant complex comprises four taxa (sspp. bicostata, globulus, maidenii, pseudoglobulus) that are geographically and morphologically distinct, but linked by extensive "intergrade" populations. To resolve their genetic affinities, nine microsatellites were used to genotype 1200 trees from throughout the natural range of the complex in Australia, representing 33 morphological core and intergrade populations. There was significant spatial genetic structure (F(ST) = 0.10), but variation was continuous. High genetic diversity in southern ssp. maidenii indicates that this region is the center of origin. Genetic diversity decreases and population differentiation increases with distance from this area, suggesting that drift is a major evolutionary process. Many of the intergrade populations, along with other populations morphologically classified as ssp. pseudoglobulus or ssp. globulus, belong to a "cryptic genetic entity" that is genetically and geographically intermediate between core ssp. bicostata, ssp. maidenii, and ssp. globulus. Geography, rather than morphology, therefore, is the best predictor of overall genetic affinities within the complex and should be used to classify germplasm into management units for conservation and breeding purposes.

Keywords: Blue gum; clinal variation; conservation genetics; evolution; gene pool management; genetic diversity; hybridization; microsatellite DNA; speciation

References

  1. Bioinformatics. 2012 Oct 1;28(19):2537-9 - PubMed
  2. Genetics. 2007 Apr;175(4):1883-93 - PubMed
  3. G3 (Bethesda). 2011 Jul;1(2):151-9 - PubMed
  4. Mol Ecol. 2004 Dec;13(12):3751-62 - PubMed
  5. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  6. J Hered. 2009 Jan-Feb;100(1):106-13 - PubMed
  7. Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):275-84; discussion 284 - PubMed
  8. Am J Bot. 2008 Mar;95(3):368-80 - PubMed
  9. Theor Appl Genet. 1996 May;92(7):832-9 - PubMed
  10. Mol Ecol. 2007 Feb;16(4):697-707 - PubMed
  11. Mol Genet Genomics. 2002 May;267(3):338-47 - PubMed
  12. Monogr Popul Biol. 1977;10:1-246 - PubMed
  13. Am J Bot. 2004 Sep;91(9):1352-63 - PubMed
  14. Bioinformatics. 2001 Jul;17(7):664-8 - PubMed
  15. Am J Bot. 1999 Jul;86(7):1038-46 - PubMed
  16. Bioinformatics. 2007 Jul 15;23(14):1801-6 - PubMed
  17. Heredity (Edinb). 2001 May;86(Pt 5):557-63 - PubMed
  18. Mol Ecol. 2009 Oct;18(20):4180-92 - PubMed
  19. Genetics. 1943 Mar;28(2):114-38 - PubMed
  20. Evol Appl. 2011 Mar;4(2):326-37 - PubMed
  21. Mol Ecol. 2010 Apr;19(7):1367-80 - PubMed
  22. New Phytol. 2011 Sep;191(4):1041-1053 - PubMed
  23. Mol Ecol. 2005 Jul;14(8):2611-20 - PubMed
  24. New Phytol. 2007;175(2):370-380 - PubMed
  25. Evolution. 2001 Apr;55(4):703-11 - PubMed
  26. Genetics. 2000 Jun;155(2):945-59 - PubMed
  27. Trends Ecol Evol. 2010 Sep;25(9):520-9 - PubMed
  28. Mol Phylogenet Evol. 2011 Apr;59(1):206-24 - PubMed
  29. Evolution. 1984 Nov;38(6):1358-1370 - PubMed
  30. Evol Appl. 2012 Feb;5(2):103-6 - PubMed
  31. Ecology. 2009 Jul;90(7):1762-72 - PubMed
  32. Mol Phylogenet Evol. 2008 May;47(2):506-22 - PubMed
  33. Mol Ecol. 2006 Oct;15(12):3505-13 - PubMed
  34. Mol Ecol. 2008 Mar;17(5):1170-88 - PubMed

Publication Types