Display options
Share it on

Front Plant Sci. 2013 Feb 04;4:13. doi: 10.3389/fpls.2013.00013. eCollection 2013.

Differential Contribution of Transcription Factors to Arabidopsis thaliana Defense Against Spodoptera littoralis.

Frontiers in plant science

Fabian Schweizer, Natacha Bodenhausen, Steve Lassueur, Frédéric G Masclaux, Philippe Reymond

Affiliations

  1. Department of Plant Molecular Biology, University of Lausanne Lausanne, Switzerland.

PMID: 23382734 PMCID: PMC3563046 DOI: 10.3389/fpls.2013.00013

Abstract

In response to insect herbivory, Arabidopsis plants activate the synthesis of the phytohormone jasmonate-isoleucine, which binds to a complex consisting of the receptor COI1 and JAZ repressors. Upon proteasome-mediated JAZ degradation, basic helix-loop-helix transcription factors (TFs) MYC2, MYC3, and MYC4 become activated and this results in the expression of defense genes. Although the jasmonate (JA) pathway is known to be essential for the massive transcriptional reprogramming that follows herbivory, there is however little information on other TFs that are required for defense against herbivores and whether they contribute significantly to JA-dependent defense gene expression. By transcriptome profiling, we identified 41 TFs that were induced in response to herbivory by the generalist Spodoptera littoralis. Among them, nine genes, including WRKY18, WRKY40, ANAC019, ANAC055, ZAT10, ZAT12, AZF2, ERF13, and RRTF1, were found to play a significant role in resistance to S. littoralis herbivory. Compared to the triple mutant myc234 that is as sensitive as coi1-1 to herbivory, knockout lines of these nine TFs were only partially more sensitive to S. littoralis but, however, some displayed distinct gene expression changes at the whole-genome level. Data thus reveal that MYC2, MYC3, and MYC4 are master regulators of Arabidopsis resistance to a generalist herbivore and identify new genes involved in insect defense.

Keywords: Arabidopsis thaliana; MYC2; MYC3; MYC4; Spodoptera littoralis; defense; transcription factors

References

  1. Cell Res. 2008 Jul;18(7):756-67 - PubMed
  2. Nature. 2010 Nov 18;468(7322):400-5 - PubMed
  3. Plant Physiol. 2001 Feb;125(2):711-7 - PubMed
  4. Nature. 2007 Aug 9;448(7154):661-5 - PubMed
  5. Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6478-83 - PubMed
  6. Plant Cell. 2004 Sep;16(9):2481-98 - PubMed
  7. Plant Physiol. 2010 May;153(1):348-63 - PubMed
  8. Nat Chem Biol. 2009 May;5(5):344-50 - PubMed
  9. BMC Bioinformatics. 2007 Oct 18;8:400 - PubMed
  10. Curr Opin Plant Biol. 2002 Aug;5(4):300-7 - PubMed
  11. Plant Cell. 2007 Jul;19(7):2225-45 - PubMed
  12. Mol Plant Microbe Interact. 2007 Nov;20(11):1406-20 - PubMed
  13. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12837-42 - PubMed
  14. Plant J. 2011 May;66(4):700-11 - PubMed
  15. Plant Cell. 2011 Sep;23(9):3089-100 - PubMed
  16. Plant Cell. 2011 Feb;23(2):701-15 - PubMed
  17. Plant Physiol. 2008 Jul;147(3):1347-57 - PubMed
  18. J Biol Chem. 2004 Mar 19;279(12):11736-43 - PubMed
  19. Plant Cell. 1998 Dec;10(12):2103-13 - PubMed
  20. Plant Cell. 1996 Nov;8(11):2067-77 - PubMed
  21. Plant Signal Behav. 2006 Nov;1(6):305-11 - PubMed
  22. Science. 1998 May 15;280(5366):1091-4 - PubMed
  23. Database (Oxford). 2010 Oct 12;2010:baq024 - PubMed
  24. Nature. 2010 Apr 1;464(7289):788-91 - PubMed
  25. Plant Mol Biol. 1998 Dec;38(6):1071-80 - PubMed
  26. Plant Cell. 2007 Aug;19(8):2470-83 - PubMed
  27. Plant Physiol. 2005 Nov;139(3):1545-56 - PubMed
  28. Cell Host Microbe. 2012 Jun 14;11(6):587-96 - PubMed
  29. PLoS Pathog. 2010 Apr 15;6(4):e1000861 - PubMed
  30. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8113-8 - PubMed
  31. FEBS Lett. 2006 Dec 11;580(28-29):6537-42 - PubMed
  32. Plant Mol Biol. 2005 Jul;58(4):497-513 - PubMed
  33. Plant Physiol. 2010 Apr;152(4):2258-68 - PubMed
  34. Plant J. 2007 Jul;51(1):79-91 - PubMed
  35. Plant Physiol. 2004 May;135(1):530-8 - PubMed
  36. Plant Cell. 2004 Jan;16(1):126-43 - PubMed
  37. Plant Cell. 2000 May;12(5):707-20 - PubMed
  38. Plant Cell. 2004 Jul;16(7):1938-50 - PubMed
  39. Plant J. 2007 Jun;50(5):886-901 - PubMed
  40. Plant Cell Environ. 2012 Feb;35(2):441-53 - PubMed
  41. Mol Plant Microbe Interact. 2005 Sep;18(9):923-37 - PubMed
  42. Trends Plant Sci. 2006 Feb;11(2):89-100 - PubMed
  43. Plant Cell. 1994 May;6(5):751-759 - PubMed
  44. Phytochemistry. 2006 Nov;67(22):2450-62 - PubMed
  45. Phytochem Anal. 2012 Sep-Oct;23(5):520-8 - PubMed
  46. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12539-44 - PubMed
  47. J Plant Growth Regul. 2000 Jun;19(2):195-216 - PubMed
  48. Front Plant Sci. 2011 Sep 26;2:47 - PubMed
  49. J Agric Food Chem. 2004 Aug 11;52(16):5135-8 - PubMed
  50. Nature. 2007 Aug 9;448(7154):666-71 - PubMed
  51. Plant Cell. 2006 May;18(5):1310-26 - PubMed
  52. Plant Cell. 2004 Nov;16(11):3132-47 - PubMed
  53. Annu Rev Plant Biol. 2008;59:41-66 - PubMed
  54. New Phytol. 2008;177(3):627-642 - PubMed
  55. Mol Plant. 2010 Jan;3(1):2-20 - PubMed
  56. Annu Rev Cell Dev Biol. 2012;28:489-521 - PubMed
  57. Annu Rev Plant Biol. 2006;57:303-33 - PubMed
  58. Plant Cell. 2010 Jun;22(6):1909-35 - PubMed
  59. Genes Dev. 2004 Jul 1;18(13):1577-91 - PubMed
  60. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5473-7 - PubMed
  61. Plant Cell. 2008 Jul;20(7):1984-2000 - PubMed
  62. PLoS One. 2008 Apr 30;3(4):e2068 - PubMed

Publication Types