Display options
Share it on

Biotechnol Biofuels. 2013 Feb 15;6(1):24. doi: 10.1186/1754-6834-6-24.

De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes.

Biotechnology for biofuels

Aaron Weimann, Yulia Trukhina, Phillip B Pope, Sebastian Ga Konietzny, Alice C McHardy

Affiliations

  1. Max-Planck Research Group for Computational Genomics and Epidemiology, Max-Planck Institute for Informatics, University Campus E1 4, Saarbrücken, 66123, Germany.
  2. Department of Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.
  3. Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Post Office Box 5003, Ås, 1432, Norway.

PMID: 23414703 PMCID: PMC3585893 DOI: 10.1186/1754-6834-6-24

Abstract

BACKGROUND: Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data.

RESULTS: We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes.

CONCLUSIONS: Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes.

References

  1. PLoS One. 2012;7(6):e38571 - PubMed
  2. J Bacteriol. 2006 Jun;188(11):3849-61 - PubMed
  3. Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents - PubMed
  4. Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 - PubMed
  5. BMC Evol Biol. 2012 Sep 20;12:186 - PubMed
  6. Nucleic Acids Res. 2003 Jul 1;31(13):3850-5 - PubMed
  7. PLoS One. 2011 Apr 19;6(4):e18814 - PubMed
  8. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14793-8 - PubMed
  9. Nature. 2007 Nov 22;450(7169):560-5 - PubMed
  10. Stat Appl Genet Mol Biol. 2004;3:Article37 - PubMed
  11. Biochem J. 2004 Sep 15;382(Pt 3):769-81 - PubMed
  12. Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17727-32 - PubMed
  13. Appl Biochem Biotechnol. 2011 Jan;163(2):205-14 - PubMed
  14. Science. 2007 Feb 9;315(5813):804-7 - PubMed
  15. PLoS One. 2012;7(6):e39331 - PubMed
  16. Nucleic Acids Res. 2012 Jan;40(Database issue):D13-25 - PubMed
  17. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15293-8 - PubMed
  18. Science. 2011 Jan 28;331(6016):463-7 - PubMed
  19. Nature. 2008 Aug 14;454(7206):841-5 - PubMed
  20. Nucleic Acids Res. 2001 Jan 1;29(1):41-3 - PubMed
  21. Appl Environ Microbiol. 2007 Jun;73(11):3536-46 - PubMed
  22. Nucleic Acids Res. 2012 Jan;40(Database issue):D123-9 - PubMed
  23. J Biotechnol. 1997 Jul 23;56(1):1-24 - PubMed
  24. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 - PubMed
  25. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53 - PubMed
  26. Nucleic Acids Res. 2000 Jan 1;28(1):231-4 - PubMed
  27. Biotechnol Lett. 2010 Dec;32(12):1765-75 - PubMed
  28. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 - PubMed
  29. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 - PubMed
  30. Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 - PubMed
  31. Stand Genomic Sci. 2011 Feb 20;4(1):13-22 - PubMed
  32. Curr Opin Biotechnol. 2009 Jun;20(3):358-63 - PubMed
  33. J Bacteriol. 2008 Aug;190(15):5455-63 - PubMed
  34. Ann N Y Acad Sci. 2008 Mar;1125:289-97 - PubMed
  35. Adv Bioinformatics. 2010;: - PubMed
  36. Trends Biotechnol. 1999 Dec;17(12):482-7 - PubMed
  37. Adv Microb Physiol. 1998;39:31-130 - PubMed
  38. Appl Biochem Biotechnol. 2011 Mar;163(5):649-57 - PubMed

Publication Types