Display options
Share it on

J Magn Reson. 2013 Mar;228:50-8. doi: 10.1016/j.jmr.2012.12.016. Epub 2013 Jan 04.

Effect of glassy modes on electron spin-lattice relaxation in solid ethanol.

Journal of magnetic resonance (San Diego, Calif. : 1997)

Dalibor Merunka, Marina Kveder, Milan Jokić, Boris Rakvin

Affiliations

  1. Ruer Boškovi? Institute, Bijeni?ka cesta 54, HR-10000 Zagreb, Croatia. [email protected]

PMID: 23357426 DOI: 10.1016/j.jmr.2012.12.016

Abstract

Electron spin-lattice relaxation (SLR) of TEMPO radical was measured in the crystalline and glassy states of deuterated ethanol in the temperature range 5-80K using X-band electron paramagnetic resonance (EPR). The measured SLR rates are higher in the glassy than in crystalline state and the excess SLR rate in glassy state is much lower than in ethanol. This result suggests that extra modes in glassy state, i.e. glassy modes, produce the excess SLR rate via the electron-nuclear dipolar (END) interaction between the electron spin of radical and the matrix protons or deuterons. Using the soft-potential model and assuming the END interaction between the electron spin and the matrix protons, the contributions to SLR rate of various mechanisms of glassy modes were theoretically analyzed. The evaluations of SLR rates in glassy ethanol indicate two main mechanisms of glassy modes: thermally activated relaxation of double-well systems and phonon-induced relaxation of quasi-harmonic local modes. The SLR rates induced by these mechanisms correlate well with the experimental data.

Copyright © 2012 Elsevier Inc. All rights reserved.

Publication Types