Display options
Share it on

Stud Mycol. 2013 Mar 15;74(1):59-70. doi: 10.3114/sim0009. Epub 2012 Sep 20.

Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles.

Studies in mycology

M R van Leeuwen, P Krijgsheld, R Bleichrodt, H Menke, H Stam, J Stark, H A B Wösten, J Dijksterhuis

Affiliations

  1. Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.

PMID: 23449598 PMCID: PMC3563291 DOI: 10.3114/sim0009

Abstract

The transcriptome of conidia of Aspergillus niger was analysed during the first 8 h of germination. Dormant conidia started to grow isotropically two h after inoculation in liquid medium. Isotropic growth changed to polarised growth after 6 h, which coincided with one round of mitosis. Dormant conidia contained transcripts from 4 626 genes. The number of genes with transcripts decreased to 3 557 after 2 h of germination, after which an increase was observed with 4 780 expressed genes 8 h after inoculation. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. The correlation coefficient between the RNA profiles of 0 h and 8 h was 0.46. They were between 0.76-0.93 when profiles of 2, 4 and 6 h were compared with that of 8 h. Dormant conidia were characterised by high levels of transcripts of genes involved in the formation of protecting components such as trehalose, mannitol, protective proteins (e.g. heat shock proteins and catalase). Transcripts belonging to the Functional Gene Categories (FunCat) protein synthesis, cell cycle and DNA processing and respiration were over-represented in the up-regulated genes at 2 h, whereas metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. At 6 h and 8 h no functional gene classes were over- or under-represented in the differentially expressed genes. Taken together, it is concluded that the transcriptome of conidia changes dramatically during the first two h and that initiation of protein synthesis and respiration are important during early stages of germination.

Keywords: Aspergillus niger; conidia; germination; transcriptome

References

  1. Nucleic Acids Res. 2004 Oct 14;32(18):5539-45 - PubMed
  2. Mol Microbiol. 2005 Nov;58(3):693-9 - PubMed
  3. Infect Immun. 2006 Aug;74(8):4865-74 - PubMed
  4. Genetics. 2005 Sep;171(1):71-80 - PubMed
  5. Microbiology (Reading). 2001 Jul;147(Pt 7):1851-1862 - PubMed
  6. Mol Cell Biol. 1994 Aug;14(8):5333-48 - PubMed
  7. BMC Evol Biol. 2006 Dec 19;6:109 - PubMed
  8. Curr Opin Microbiol. 2002 Dec;5(6):580-5 - PubMed
  9. BMC Genomics. 2008 Sep 16;9:417 - PubMed
  10. J Bacteriol. 1997 May;179(10):3154-63 - PubMed
  11. Mol Biol Cell. 2005 Apr;16(4):1961-70 - PubMed
  12. Med Mycol. 2010 Feb;48(1):35-47 - PubMed
  13. BMC Bioinformatics. 2007 Jul 30;8:273 - PubMed
  14. Mol Microbiol. 2000 Jun;36(6):1250-64 - PubMed
  15. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 - PubMed
  16. Nucleic Acids Res. 2005 Nov 14;33(20):6469-85 - PubMed
  17. Mol Gen Genet. 1999 Jan;260(6):510-21 - PubMed
  18. Biochim Biophys Acta. 2000 Feb 15;1463(2):267-78 - PubMed
  19. Curr Genet. 1988 Nov;14(5):437-43 - PubMed
  20. Fungal Genet Biol. 2008 Jun;45(6):963-72 - PubMed
  21. Environ Health Perspect. 1991 Nov;95:29-34 - PubMed
  22. Microbiology (Reading). 2004 Apr;150(Pt 4):1095-1101 - PubMed
  23. J Appl Microbiol. 2005;99(5):1204-14 - PubMed
  24. Nat Biotechnol. 2007 Feb;25(2):221-31 - PubMed
  25. Trends Microbiol. 2004 Mar;12(3):135-41 - PubMed
  26. Eukaryot Cell. 2006 Nov;5(11):1934-40 - PubMed
  27. Int Rev Cytol. 2006;251:41-77 - PubMed
  28. Fungal Genet Biol. 2009 Mar;46 Suppl 1:S141-52 - PubMed
  29. Mol Biol Cell. 2008 Apr;19(4):1439-49 - PubMed
  30. Fungal Genet Biol. 2008 Apr;45(4):389-99 - PubMed
  31. Eukaryot Cell. 2007 Dec;6(12):2311-22 - PubMed
  32. Genetics. 2000 Jun;155(2):647-56 - PubMed
  33. Stud Mycol. 2013 Mar 15;74(1):31-46 - PubMed
  34. Mol Biol Cell. 2011 Jun 1;22(11):1896-906 - PubMed
  35. Nucleic Acids Res. 1989 Jan 11;17(1):197-214 - PubMed
  36. Appl Environ Microbiol. 2010 Jan;76(1):366-9 - PubMed
  37. Stud Mycol. 2013 Mar 15;74(1):1-29 - PubMed
  38. J Microbiol Methods. 2008 Aug;74(2-3):64-73 - PubMed
  39. Fungal Genet Biol. 2004 Apr;41(4):391-400 - PubMed
  40. J Cell Biol. 1999 Mar 22;144(6):1173-86 - PubMed
  41. FEMS Microbiol Lett. 2001 May 30;199(2):153-60 - PubMed
  42. Genome Biol. 2011 Aug 04;12(8):R71 - PubMed
  43. Plant Physiol. 2008 Sep;148(1):6-24 - PubMed
  44. Stud Mycol. 2013 Mar 15;74(1):71-85 - PubMed
  45. FEMS Microbiol Lett. 1995 Dec 1;134(1):57-62 - PubMed
  46. Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18073-8 - PubMed
  47. Fungal Genet Biol. 2011 May;48(5):544-53 - PubMed
  48. Biotechnol Lett. 2011 Mar;33(3):469-76 - PubMed
  49. Fungal Genet Biol. 2009 Dec;46(12):887-97 - PubMed
  50. Mol Microbiol. 1997 Apr;24(1):203-16 - PubMed
  51. Mol Microbiol. 1999 May;32(3):471-83 - PubMed
  52. Eukaryot Cell. 2007 Feb;6(2):157-70 - PubMed
  53. Fungal Genet Biol. 2002 Nov;37(2):197-204 - PubMed
  54. Med Mycol. 2009;47 Suppl 1:S47-52 - PubMed
  55. Eukaryot Cell. 2009 Nov;8(11):1626-36 - PubMed
  56. Eukaryot Cell. 2008 Jan;7(1):141-53 - PubMed
  57. Eukaryot Cell. 2004 Oct;3(5):1101-10 - PubMed
  58. Biochem Cell Biol. 2010 Apr;88(2):167-74 - PubMed
  59. Mol Cell Biol. 2000 May;20(9):3245-55 - PubMed
  60. J Bacteriol. 1974 Jan;117(1):196-202 - PubMed
  61. Infect Immun. 2004 Sep;72(9):5193-203 - PubMed
  62. Mol Microbiol. 1999 Jun;32(5):1002-12 - PubMed
  63. Genetics. 1996 Nov;144(3):923-33 - PubMed
  64. J Cell Sci. 2008 Dec 1;121(Pt 23):3878-89 - PubMed
  65. Eukaryot Cell. 2003 Aug;2(4):690-8 - PubMed

Publication Types