Display options
Share it on

Front Aging Neurosci. 2013 Mar 14;5:9. doi: 10.3389/fnagi.2013.00009. eCollection 2013.

Copper metabolism of astrocytes.

Frontiers in aging neuroscience

Ralf Dringen, Ivo F Scheiber, Julian F B Mercer

Affiliations

  1. Centre for Biomolecular Interactions Bremen, University of Bremen Bremen, Germany ; Centre for Environmental Research and Sustainable Technology, University of Bremen Bremen, Germany.

PMID: 23503037 PMCID: PMC3596760 DOI: 10.3389/fnagi.2013.00009

Abstract

This short review will summarize the current knowledge on the uptake, storage, and export of copper ions by astrocytes and will address the potential roles of astrocytes in copper homeostasis in the normal and diseased brain. Astrocytes in culture efficiently accumulate copper by processes that include both the copper transporter Ctr1 and Ctr1-independent mechanisms. Exposure of astrocytes to copper induces an increase in cellular glutathione (GSH) content as well as synthesis of metallothioneins, suggesting that excess of copper is stored as complex with GSH and in metallothioneins. Furthermore, exposure of astrocytes to copper accelerates the release of GSH and glycolytically generated lactate. Astrocytes are able to export copper and express the Menkes protein ATP7A. This protein undergoes reversible, copper-dependent trafficking between the trans-Golgi network and vesicular structures. The ability of astrocytes to efficiently take up, store and export copper suggests that astrocytes play a key role in the supply of neurons with copper and that astrocytes should be considered as target for therapeutic interventions that aim to correct disturbances in brain copper homeostasis.

Keywords: ATP7A; Ctr1; astroglia; copper export; metallothioneins; oxidative stress; toxicity; transport

References

  1. Toxicol Sci. 2008 Mar;102(1):138-49 - PubMed
  2. Brain Res. 2012 Apr 4;1447:9-19 - PubMed
  3. J Inherit Metab Dis. 1991;14(6):896-901 - PubMed
  4. J Neurosci Res. 2005 Jan 1-15;79(1-2):157-65 - PubMed
  5. Int J Dev Neurosci. 2011 Dec;29(8):811-8 - PubMed
  6. Brain Dev. 2011 Mar;33(3):243-51 - PubMed
  7. Am J Physiol Cell Physiol. 2003 Jun;284(6):C1525-30 - PubMed
  8. Neurochem Int. 2010 Oct;57(3):314-22 - PubMed
  9. Neurosci Lett. 2011 Jul 1;498(1):42-6 - PubMed
  10. Neurochem Int. 2013 Apr;62(5):540-55 - PubMed
  11. J Comp Pathol. 2008 Nov;139(4):252-5 - PubMed
  12. J Neurochem. 2012 Apr;121(1):4-27 - PubMed
  13. Neurobiol Dis. 2004 Apr;15(3):534-43 - PubMed
  14. Neurochem Res. 2007 Nov;32(11):1884-90 - PubMed
  15. Nat Rev Neurol. 2011 Jan;7(1):15-29 - PubMed
  16. Histochemistry. 1986;85(4):341-7 - PubMed
  17. Best Pract Res Clin Gastroenterol. 2010 Oct;24(5):531-9 - PubMed
  18. J Neurochem. 1999 Jan;72(1):422-9 - PubMed
  19. Neurochem Int. 2010 Feb;56(3):451-60 - PubMed
  20. Lab Invest. 2008 Aug;88(8):816-30 - PubMed
  21. J Biol Chem. 2002 Feb 8;277(6):4380-7 - PubMed
  22. Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1:S52-4 - PubMed
  23. Neurobiol Dis. 2007 Sep;27(3):278-91 - PubMed
  24. J Neurochem. 2006 Apr;97(2):373-84 - PubMed
  25. Annu Rev Biochem. 2010;79:537-62 - PubMed
  26. Front Neuroenergetics. 2010 Feb 03;2:1 - PubMed
  27. Neurochem Int. 2013 Apr;62(5):556-65 - PubMed
  28. Chem Biol Interact. 2010 Jul 30;186(2):184-99 - PubMed
  29. J Biol Chem. 2005 Mar 11;280(10):9640-5 - PubMed
  30. Neurochem Res. 2011 May;36(5):894-903 - PubMed
  31. Neurochem Int. 2012 Feb;60(3):292-300 - PubMed

Publication Types