Display options
Share it on

Comput Sci Discov. 2012 Mar 20;5(1). doi: 10.1088/1749-4699/5/1/015002.

Multi-Scale Continuum Modeling of Biological Processes: From Molecular Electro-Diffusion to Sub-Cellular Signaling Transduction.

Computational science & discovery

Y Cheng, P Kekenes-Huskey, Je Hake, Mj Holst, Ja McCammon, Ap Michailova

Affiliations

  1. Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.

PMID: 23505398 PMCID: PMC3596845 DOI: 10.1088/1749-4699/5/1/015002

Abstract

This article provides a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally-validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times with increasing ionic strength and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a non-linear, reaction-diffusion system describing Ca

References

  1. J Biol Chem. 1997 Sep 12;272(37):23265-77 - PubMed
  2. Pac Symp Biocomput. 2009;:281-92 - PubMed
  3. Chem Biol Drug Des. 2010 Sep 1;76(3):201-17 - PubMed
  4. Am J Physiol Cell Physiol. 2007 Aug;293(2):C542-57 - PubMed
  5. Biophys J. 1996 Mar;70(3):1494-504 - PubMed
  6. Pflugers Arch. 1994 Oct;428(3-4):415-7 - PubMed
  7. PLoS Comput Biol. 2009 Mar;5(3):e1000325 - PubMed
  8. Ann N Y Acad Sci. 2002 Nov;976:488-99 - PubMed
  9. Biophys J. 2005 Mar;88(3):2234-49 - PubMed
  10. J Mol Cell Cardiol. 2011 Jan;50(1):165-74 - PubMed
  11. Biophys J. 2007 May 15;92(10):3397-406 - PubMed
  12. J Mol Graph Model. 2008 Jun;26(8):1370-80 - PubMed
  13. Biophys J. 2008 Nov 15;95(10):4659-67 - PubMed
  14. Proteins. 1998 Feb 15;30(3):215-27 - PubMed
  15. Biophys J. 2001 Aug;81(2):614-29 - PubMed
  16. J Mol Cell Cardiol. 2003 Nov;35(11):1325-37 - PubMed
  17. Biophys J. 1998 Oct;75(4):1679-88 - PubMed
  18. Science. 1987 Oct 23;238(4826):486-91 - PubMed
  19. Biophys Chem. 2007 May;127(3):129-39 - PubMed
  20. Biophys J. 2002 Dec;83(6):3134-51 - PubMed
  21. Biophys J. 2008 May 1;94(9):3577-89 - PubMed
  22. Biophys J. 2004 Dec;87(6):3723-36 - PubMed
  23. IEEE Eng Med Biol Mag. 2009 Mar-Apr;28(2):46-57 - PubMed
  24. J Cell Sci. 2009 Apr 1;122(Pt 7):1005-13 - PubMed
  25. Biophys J. 2009 May 6;96(9):3582-90 - PubMed
  26. Biophys J. 2004 Apr;86(4):2017-29 - PubMed
  27. Biophys J. 2002 Oct;83(4):1891-901 - PubMed
  28. Biophys J. 2005 Mar;88(3):1659-65 - PubMed
  29. Biochemistry. 2009 Dec 8;48(48):11532-45 - PubMed
  30. Am J Physiol Cell Physiol. 2004 Feb;286(2):C330-41 - PubMed
  31. PLoS Comput Biol. 2010 Oct 28;6(10):e1000972 - PubMed
  32. Biophys J. 2004 Sep;87(3):1558-66 - PubMed
  33. Biophys J. 1981 Jun;34(3):559-69 - PubMed

Publication Types

Grant support