Display options
Share it on

Sci Rep. 2013;3:1416. doi: 10.1038/srep01416.

Coherent tunnelling across a quantum point contact in the quantum Hall regime.

Scientific reports

F Martins, S Faniel, B Rosenow, H Sellier, S Huant, M G Pala, L Desplanque, X Wallart, V Bayot, B Hackens

Affiliations

  1. IMCN/NAPS, Université catholique de Louvain, Louvain-la-Neuve B-1348, Belgium. [email protected]

PMID: 23475303 PMCID: PMC3593222 DOI: 10.1038/srep01416

Abstract

The unique properties of quantum hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling.

References

  1. Phys Rev B Condens Matter. 1989 Jan 15;39(2):1242-1250 - PubMed
  2. Phys Rev Lett. 2006 Jan 13;96(1):016804 - PubMed
  3. Phys Rev Lett. 1995 May 15;74(20):4047-4050 - PubMed
  4. Phys Rev B Condens Matter. 1988 Nov 15;38(14):9375-9389 - PubMed
  5. Nature. 2004 Jan 22;427(6972):328-32 - PubMed
  6. Phys Rev Lett. 2005 Apr 15;94(14):146802 - PubMed
  7. Phys Rev Lett. 2007 Sep 28;99(13):136807 - PubMed
  8. Nat Commun. 2010 Jul 27;1:39 - PubMed
  9. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5276-81 - PubMed
  10. Science. 1995 Feb 17;267(5200):1010-2 - PubMed
  11. Phys Rev Lett. 2004 Nov 19;93(21):216801 - PubMed
  12. Science. 2000 Sep 29;289(5488):2323-6 - PubMed
  13. Phys Rev Lett. 2009 Nov 13;103(20):206806 - PubMed
  14. Nanotechnology. 2009 Jul 1;20(26):264021 - PubMed
  15. Phys Rev Lett. 1992 Sep 28;69(13):1989-1992 - PubMed
  16. Phys Rev Lett. 1989 May 22;62(21):2523-2526 - PubMed
  17. Science. 2009 Jun 5;324(5932):1277-8 - PubMed
  18. Phys Rev Lett. 2008 Mar 28;100(12):126802 - PubMed
  19. Phys Rev B Condens Matter. 1988 Nov 15;38(14):10162-10165 - PubMed
  20. Phys Rev Lett. 2007 Mar 9;98(10):106801 - PubMed
  21. Phys Rev B Condens Matter. 1988 Mar 15;37(8):4111-4125 - PubMed
  22. Nature. 2003 Mar 27;422(6930):415-8 - PubMed

Publication Types