Display options
Share it on

Front Hum Neurosci. 2013 Apr 02;7:105. doi: 10.3389/fnhum.2013.00105. eCollection 2013.

Prediction of brain-computer interface aptitude from individual brain structure.

Frontiers in human neuroscience

S Halder, B Varkuti, M Bogdan, A Kübler, W Rosenstiel, R Sitaram, N Birbaumer

Affiliations

  1. Department of Psychology I, University of Würzburg Würzburg, Germany ; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany ; Wilhelm-Schickard Institute for Computer Science, University of Tübingen Tübingen, Germany.

PMID: 23565083 PMCID: PMC3613602 DOI: 10.3389/fnhum.2013.00105

Abstract

OBJECTIVE: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary.

METHODS: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance.

RESULTS: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error).

CONCLUSIONS: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance.

SIGNIFICANCE: This confirms that structural brain traits contribute to individual performance in BCI use.

Keywords: BCI; DTI; aptitude; fractional anisotropy; motor imagery

References

  1. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15649-52 - PubMed
  2. Neurology. 2010 Nov 2;75(18):1645-52 - PubMed
  3. Hum Brain Mapp. 2009 Jul;30(7):2098-119 - PubMed
  4. Clin EEG Neurosci. 2011 Oct;42(4):245-52 - PubMed
  5. Brain. 2012 Feb;135(Pt 2):596-614 - PubMed
  6. J Neural Eng. 2012 Apr;9(2):026014 - PubMed
  7. Neuroimage. 2011 Apr 15;55(4):1779-90 - PubMed
  8. Biol Psychol. 2013 Feb;92(2):267-74 - PubMed
  9. Clin Neurophysiol. 1999 Nov;110(11):1842-57 - PubMed
  10. J Neurosci Methods. 2008 Jan 15;167(1):43-50 - PubMed
  11. Electroencephalogr Clin Neurophysiol. 1978 Jan;44(1):83-93 - PubMed
  12. Neuroimage. 2005 Jul 1;26(3):839-51 - PubMed
  13. Neuroradiology. 2010 Aug;52(8):729-33 - PubMed
  14. IEEE Trans Rehabil Eng. 2000 Jun;8(2):211-4 - PubMed
  15. J Neural Eng. 2011 Apr;8(2):025020 - PubMed
  16. Front Neurosci. 2009 Jun 19;3:60 - PubMed
  17. Arch Phys Med Rehabil. 2001 Nov;82(11):1533-9 - PubMed
  18. Clin Neurophysiol. 2003 Mar;114(3):399-409 - PubMed
  19. Neuroimage. 2011 May 15;56(2):837-42 - PubMed
  20. Neuroimage. 2011 Feb 1;54(3):2318-29 - PubMed
  21. Int J Psychophysiol. 1997 Jun;26(1-3):121-35 - PubMed
  22. Clin Neurophysiol. 2008 Nov;119(11):2658-66 - PubMed
  23. Neurosci Lett. 2009 Oct 2;462(1):94-8 - PubMed
  24. Amyotroph Lateral Scler. 2011 Jan;12(1):52-8 - PubMed
  25. Prog Brain Res. 2011;194:27-46 - PubMed
  26. Neuroimage. 2011 May 15;56(2):814-25 - PubMed
  27. Amyotroph Lateral Scler. 2011 Jan;12(1):59-69 - PubMed
  28. Neurology. 2005 May 24;64(10):1775-7 - PubMed
  29. Front Neurosci. 2013 Mar 07;7:23 - PubMed
  30. Physiol Rev. 1990 Jan;70(1):1-41 - PubMed
  31. Trends Neurosci. 1997 Jan;20(1):44-9 - PubMed
  32. Neuroimage. 2010 Jul 15;51(4):1303-9 - PubMed
  33. J Neurosci Methods. 2012 Jan 15;203(1):233-40 - PubMed
  34. Clin Neurophysiol. 2007 Oct;118(10):2128-48 - PubMed
  35. Clin Neurophysiol. 2008 Feb;119(2):399-408 - PubMed
  36. Int J Psychophysiol. 2012 Mar;83(3):336-41 - PubMed
  37. Clin Neurophysiol. 2013 Jan;124(1):101-6 - PubMed
  38. Nature. 1999 Mar 25;398(6725):297-8 - PubMed
  39. Clin Neurophysiol. 2009 Feb;120(2):239-47 - PubMed
  40. J Neurosci. 2010 Mar 3;30(9):3297-303 - PubMed
  41. Neurorehabil Neural Repair. 2011 Mar-Apr;25(3):259-67 - PubMed
  42. Biol Psychol. 2012 Jan;89(1):80-6 - PubMed
  43. Electroencephalogr Clin Neurophysiol. 1988 Dec;70(6):510-23 - PubMed
  44. J Neurol Neurosurg Psychiatry. 2003 Aug;74(8):1117-21 - PubMed
  45. J Opt Soc Am. 1977 Nov;67(11):1475-89 - PubMed
  46. Nat Neurosci. 2009 Nov;12(11):1370-1 - PubMed
  47. IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6 - PubMed
  48. PLoS One. 2013;8(2):e53513 - PubMed
  49. Neuroimage. 2010 Feb 1;49(3):2328-39 - PubMed
  50. IEEE Trans Biomed Eng. 2008 Oct;55(10):2452-62 - PubMed
  51. Clin Neurophysiol. 2010 Jul;121(7):1023-31 - PubMed
  52. Curr Opin Neurol. 2008 Dec;21(6):634-8 - PubMed
  53. Science. 2006 Sep 8;313(5792):1402 - PubMed
  54. Biol Psychiatry. 2010 Sep 1;68(5):425-32 - PubMed
  55. Clin Neurophysiol. 2008 Aug;119(8):1909-1916 - PubMed

Publication Types