Display options
Share it on

Front Neurosci. 2013 Mar 15;7:29. doi: 10.3389/fnins.2013.00029. eCollection 2013.

Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a, and Y8b.

Frontiers in neuroscience

Görel Sundström, Tomas A Larsson, Bo Xu, Johan Heldin, Dan Larhammar

Affiliations

  1. Department of Neuroscience, Uppsala University Uppsala, Sweden.

PMID: 23508731 PMCID: PMC3598007 DOI: 10.3389/fnins.2013.00029

Abstract

The neuropeptide Y (NPY) system influences numerous physiological functions including feeding behavior, endocrine regulation, and cardiovascular regulation. In jawed vertebrates it consists of 3-4 peptides and 4-7 receptors. Teleost fishes have unique duplicates of NPY and PYY as well as the Y8 receptor. In the zebrafish, the NPY system consists of the peptides NPYa, PYYa, and PYYb (NPYb appears to have been lost) and at least seven NPY receptors: Y1, Y2, Y2-2, Y4, Y7, Y8a, and Y8b. Previously PYYb binding has been reported for Y2 and Y2-2. To search for peptide-receptor preferences, we have investigated PYYb binding to four of the remaining receptors and compared with NPYa and PYYa. Taken together, the most striking observations are that PYYa displays reduced affinity for Y2 (3 nM) compared to the other peptides and receptors and that all three peptides have higher affinity for Y4 (0.028-0.034 nM) than for the other five receptors. The strongest peptide preference by any receptor selectivity is the one previously reported for PYYb by the Y2 receptor, as compared to NPY and PYYa. These affinity differences may be helpful to elucidate specific details of peptide-receptor interactions. Also, we have investigated the level of mRNA expression in different organs using qPCR. All peptides and receptors have higher expression in heart, kidney, and brain. These quantitative aspects on receptor affinities and mRNA distribution help provide a more complete picture of the NPY system.

Keywords: G-protein-coupled receptor; NPY; PYY; evolution; zebrafish

References

  1. Gen Comp Endocrinol. 2008 Feb 1;155(3):705-16 - PubMed
  2. Peptides. 2002 Apr;23(4):773-80 - PubMed
  3. Eur J Biochem. 1992 Oct 15;209(2):765-71 - PubMed
  4. Regul Pept. 1993 Dec 10;49(2):133-44 - PubMed
  5. Endocr J. 2010;57(5):359-72 - PubMed
  6. Gen Comp Endocrinol. 2010 Apr 1;166(2):273-9 - PubMed
  7. Science. 2002 Oct 4;298(5591):176-8 - PubMed
  8. Bioinformatics. 2006 Dec 1;22(23):2971-2 - PubMed
  9. Biochem Pharmacol. 2000 Dec 15;60(12):1815-22 - PubMed
  10. Physiol Behav. 2001 Sep 1-15;74(1-2):185-90 - PubMed
  11. J Mol Endocrinol. 2002 Jun;28(3):225-35 - PubMed
  12. J Mol Evol. 2004 Jan;58(1):106-14 - PubMed
  13. Neurosci Lett. 2003 Mar 13;339(1):62-6 - PubMed
  14. Cell Mol Life Sci. 2003 Feb;60(2):350-77 - PubMed
  15. Gene. 2008 Feb 15;409(1-2):61-71 - PubMed
  16. Gen Comp Endocrinol. 2009 Feb 1;160(3):223-35 - PubMed
  17. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 - PubMed
  18. Comp Biochem Physiol B Biochem Mol Biol. 2011 Dec;160(4):166-73 - PubMed
  19. Regul Pept. 2006 Jan 15;133(1-3):32-40 - PubMed
  20. Pharmacol Ther. 2011 Jul;131(1):91-113 - PubMed
  21. Genomics. 2009 Mar;93(3):254-60 - PubMed
  22. Biochemistry. 2000 Aug 15;39(32):9935-42 - PubMed
  23. Biochem Cell Biol. 2000;78(3):371-92 - PubMed
  24. Biochem Biophys Res Commun. 1997 Dec 29;241(3):749-55 - PubMed
  25. Neuropeptides. 2004 Aug;38(4):141-51 - PubMed
  26. Peptides. 2006 Jun;27(6):1320-7 - PubMed
  27. Gen Comp Endocrinol. 2006 Feb;145(3):287-97 - PubMed
  28. Brain Res Mol Brain Res. 1999 Jul 5;70(2):242-52 - PubMed
  29. Methods. 2001 Dec;25(4):402-8 - PubMed
  30. J Biol Chem. 1995 Dec 8;270(49):29123-8 - PubMed
  31. DNA Cell Biol. 1997 Nov;16(11):1357-63 - PubMed
  32. Neuropeptides. 2009 Dec;43(6):457-63 - PubMed
  33. Am J Physiol Regul Integr Comp Physiol. 2000 Sep;279(3):R1025-34 - PubMed
  34. Eur J Neurosci. 1998 Nov;10(11):3409-16 - PubMed

Publication Types