Display options
Share it on

J Am Aging Assoc. 2001 Oct;24(4):187-93. doi: 10.1007/s11357-001-0020-6.

Role of xanthine dehydrogenase and aging on the innate immune response of Drosophila.

Journal of the American Aging Association

Y S Kim, H J Nam, H Y Chung, N D Kim, J H Ryu, W J Lee, R Arking, M A Yoo

Affiliations

  1. Department of Molecular Biology, Pusan National University, Gumjung-ku, Pusan, 609-735 ; Institute of Genetic Engineering, Pusan National University, Gumjung-ku, Pusan, 609-735.

PMID: 23604884 PMCID: PMC3455297 DOI: 10.1007/s11357-001-0020-6

Abstract

It has been proposed that uric acid is an important scavenger of deleterious oxygen species and peroxynitrite in biological systems. The cellular sources responsible for the generation of damage-causing reactive oxygen species (ROS) are widespread. Xanthine dehydrogenase (XDH) / oxidase (XOD) catalyzes the oxidation of xanthine to uric acid. The rosy (ry) gene encodes XDH/XOD in Drosophila melanogaster. XDH codes for uric acid which is a ROS scavenger. XOD however is an enzyme system implicated in ROS production. In this study, we investigated the roles of XDH in the fly's immune defense response to infection and in the aging process. We first compared ROS generation and nitric oxide (NO) level in the whole body and the gut of XDH mutant with those of wild type. Our results suggested that XDH has a protective effect with respect to both ROS and NO generations, particularly in the gut. We also examined the effect of a XDH deletion mutant on the relative sensitivity of the organism against bacterial infection, on the immune inducibility of antimicrobial peptides and on the effect of aging in the defensive response to infection. Our results strongly suggest that XDH plays an important role in the innate immune response and that the age-associated deterioration of the innate immune response might be, at least in part, associated with the loss of XDH activity in the aging process.

References

  1. Mol Cell. 1999 Nov;4(5):827-37 - PubMed
  2. EMBO Rep. 2000 Oct;1(4):353-8 - PubMed
  3. Methods Enzymol. 1984;105:352-8 - PubMed
  4. Curr Biol. 2000 Jun 29;10(13):781-4 - PubMed
  5. J Immunol. 1994 Aug 15;153(4):1789-97 - PubMed
  6. Mol Cell Biochem. 1998 Jul;184(1-2):393-400 - PubMed
  7. Adv Immunol. 1980;29:287-330 - PubMed
  8. Genetics. 2001 Aug;158(4):1645-55 - PubMed
  9. Genetics. 1989 Nov;123(3):503-9 - PubMed
  10. Insect Biochem Mol Biol. 1995 Apr;25(4):511-8 - PubMed
  11. Curr Opin Immunol. 1996 Feb;8(1):8-13 - PubMed
  12. Am J Respir Crit Care Med. 1998 Jul;158(1):299-305 - PubMed
  13. Biochem J. 1973 Feb;131(2):191-8 - PubMed
  14. J Biol Chem. 1993 Nov 5;268(31):23728-33 - PubMed
  15. Bioessays. 2000 Jul;22(7):637-45 - PubMed
  16. J Biol Chem. 1994 Dec 30;269(52):33159-63 - PubMed
  17. J Nutr Health Aging. 1999;3(1):19-23 - PubMed
  18. J Cardiovasc Pharmacol. 1992;20 Suppl 12:S63-5 - PubMed
  19. Rev Infect Dis. 1980 Sep-Oct;2(5):801-10 - PubMed
  20. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6858-62 - PubMed
  21. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4343-7 - PubMed
  22. Nature. 1998 Mar 5;392(6671):93-7 - PubMed
  23. Can J Vet Res. 1991 Oct;55(4):310-4 - PubMed
  24. Ann N Y Acad Sci. 2001 Apr;928:327-35 - PubMed
  25. Br J Pharmacol. 1995 Mar;114(6):1257-65 - PubMed
  26. Science. 1992 Apr 10;256(5054):225-8 - PubMed
  27. J Biol Chem. 1999 Feb 19;274(8):4561-9 - PubMed
  28. J Biol Chem. 1990 Dec 25;265(36):22493-8 - PubMed
  29. Age (Omaha). 1997 Jul;20(3):127-40 - PubMed
  30. Am J Physiol. 1988 May;254(5 Pt 1):G768-74 - PubMed
  31. Anal Biochem. 2000 Mar 15;279(2):202-8 - PubMed
  32. Chem Res Toxicol. 1992 Mar-Apr;5(2):227-31 - PubMed
  33. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10343-7 - PubMed
  34. Eur J Biochem. 1994 Apr 1;221(1):201-9 - PubMed
  35. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522-6 - PubMed
  36. J Mol Biol. 1998 May 8;278(3):515-27 - PubMed
  37. Free Radic Biol Med. 1996;21(5):651-68 - PubMed
  38. J Biol Chem. 2001 Apr 27;276(17):14359-65 - PubMed

Publication Types