Display options
Share it on

Stem Cells Int. 2013;2013:353105. doi: 10.1155/2013/353105. Epub 2013 Mar 19.

Optimal labeling dose, labeling time, and magnetic resonance imaging detection limits of ultrasmall superparamagnetic iron-oxide nanoparticle labeled mesenchymal stromal cells.

Stem cells international

Anders Bruun Mathiasen, Louise Hansen, Tina Friis, Carsten Thomsen, Kishore Bhakoo, Jens Kastrup

Affiliations

  1. Cardiac Stem Cell Laboratory and Catheterization Laboratory, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.

PMID: 23577035 PMCID: PMC3614076 DOI: 10.1155/2013/353105

Abstract

Background. Regenerative therapy is an emerging treatment modality. To determine migration and retention of implanted cells, it is crucial to develop noninvasive tracking methods. The aim was to determine ex vivo magnetic resonance imaging (MRI) detection limits of ultrasmall superparamagnetic iron-oxide (USPIO) labeled mesenchymal stromal cells (MSCs). Materials and Methods. 248 gel-phantoms were constructed and scanned on a 1.5T MRI-scanner. Phantoms contained human MSCs preincubated with USPIO nanoparticles for 2, 6, or 21 hours using 5 or 10  μ g USPIO/10(5) MSCs. In addition, porcine hearts were scanned after injection of USPIO labeled MSCs. Results. Using 21 h incubation time and 10  μ g USPIO/10(5) MSCs, labeled cells were clearly separated from unlabeled cells on MRI using 250.000 (P < 0.001), 500.000 (P = 0.007), and 1.000.000 MSCs (P = 0.008). At lower incubation times and doses, neither labeled nor unlabeled cells could be separated. In porcine hearts labeled, but not unlabeled, MSCs were identified on MRI. Conclusions. As few as 250.000 MSCs can be detected on MRI using 21 h incubation time and 10  μ g USPIO/10(5) MSCs. At lower incubation times and doses, several million cells are needed for MRI detection. USPIO labeled cells can be visualized by MRI in porcine myocardial tissue.

References

  1. Circulation. 2008 Mar 25;117(12):1555-62 - PubMed
  2. Mol Imaging Biol. 2009 Jan-Feb;11(1):31-8 - PubMed
  3. Cytotherapy. 2006;8(4):315-7 - PubMed
  4. Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H125-33 - PubMed
  5. Am J Transplant. 2008 Mar;8(3):701-6 - PubMed
  6. Can J Cardiol. 2011 Nov-Dec;27(6):818-25 - PubMed
  7. AJR Am J Roentgenol. 2009 Aug;193(2):314-25 - PubMed
  8. Stroke. 2007 Feb;38(2):303-7 - PubMed
  9. Cell Transplant. 2006;15(4):351-8 - PubMed
  10. Stem Cells. 2006 Aug;24(8):1968-75 - PubMed
  11. N Engl J Med. 2006 Nov 30;355(22):2376-8 - PubMed
  12. Biomaterials. 2008 Sep;29(26):3583-90 - PubMed
  13. Radiology. 2007 May;243(2):467-74 - PubMed
  14. Stem Cells Dev. 2007 Jun;16(3):461-6 - PubMed
  15. Future Cardiol. 2009 Nov;5(6):605-17 - PubMed
  16. Nat Biotechnol. 2005 Nov;23(11):1407-13 - PubMed
  17. J Mol Cell Cardiol. 2006 Nov;41(5):876-84 - PubMed
  18. Int J Cardiol. 2013 Jan 20;162(3):158-65 - PubMed
  19. J Neurosci Methods. 2009 Oct 15;183(2):141-8 - PubMed
  20. Mol Imaging Biol. 2011 Jun;13(3):443-451 - PubMed
  21. Acad Radiol. 2005 May;12 Suppl 1:S2-6 - PubMed
  22. Acad Radiol. 2002 Aug;9 Suppl 2:S304-6 - PubMed
  23. Circulation. 2003 May 13;107(18):2290-3 - PubMed
  24. Ann Pharm Fr. 2008 Nov-Dec;66(5-6):263-7 - PubMed
  25. Scand Cardiovasc J. 2011 Jun;45(3):161-8 - PubMed
  26. Chin Med J (Engl). 2011 Apr;124(8):1199-204 - PubMed
  27. Contrast Media Mol Imaging. 2012 May-Jun;7(3):346-55 - PubMed
  28. Circ Res. 2010 Jun 25;106(12):1904-11 - PubMed
  29. Eur Heart J. 2006 May;27(9):1114-22 - PubMed
  30. Arch Neurol. 2010 Oct;67(10):1187-94 - PubMed
  31. J Cardiovasc Transl Res. 2011 Aug;4(4):514-22 - PubMed
  32. Korean J Radiol. 2007 Sep-Oct;8(5):365-71 - PubMed
  33. Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):844-51 - PubMed
  34. Circulation. 2007 Sep 11;116(11 Suppl):I38-45 - PubMed
  35. Bioconjug Chem. 1999 Mar-Apr;10(2):186-91 - PubMed
  36. EPMA J. 2011 Mar;2(1):107-17 - PubMed
  37. Circulation. 2005 Aug 30;112(9 Suppl):I150-6 - PubMed

Publication Types