Display options
Share it on

Biomed Opt Express. 2013 Apr 01;4(4):490-9. doi: 10.1364/BOE.4.000490. Epub 2013 Mar 01.

Visible and near infrared resonance plasmonic enhanced nanosecond laser optoporation of cancer cells.

Biomedical optics express

Bastien St-Louis Lalonde, Etienne Boulais, Jean-Jacques Lebrun, Michel Meunier

Affiliations

  1. Laser Processing and Plasmonics Laboratory, Engineering Physics Department, École Polytechnique de Montréal, Montréal, Québec H3C 3A7, Canada.

PMID: 23577284 PMCID: PMC3617711 DOI: 10.1364/BOE.4.000490

Abstract

In this paper, we report a light driven, non-invasive cell membrane perforation technique based on the localized field amplification by a nanosecond pulsed laser near gold nanoparticles (AuNPs). The optoporation phenomena is investigated with pulses generated by a Nd:YAG laser for two wavelengths that are either in the visible (532 nm) or near infrared (NIR) (1064 nm). Here, the main objective is to compare on and off localized surface plasmonic resonance (LSPR) to introduce foreign material through the cell membrane using nanosecond laser pulses. The membrane permeability of human melanoma cells (MW278) has been successfully increased as shown by the intake of a fluorescent dye upon irradiation. The viability of this laser driven perforation method is evaluated by propidium iodide exclusion as well as MTT assay. Our results show that up to 25% of the cells are perforated with 532 nm pulses at 50 mJ/cm(2) and around 30% of the cells are perforated with 1064 nm pulses at 1 J/cm(2). With 532 nm pulses, the viability 2 h after treatment is 64% but it increases to 88% 72 h later. On the other hand, the irradiation with 1064 nm pulses leads to an improved 2 h viability of 81% and reaches 98% after 72 h. Scanning electron microscopy images show that the 5 pulses delivered during treatment induce changes in the AuNPs size distribution when irradiated by a 532 nm beam, while this distribution is barely affected when 1064 nm is used.

Keywords: (140.3538) Lasers, pulsed; (170.0170) Medical optics and biotechnology

References

  1. Biomaterials. 2012 Feb;33(6):1821-6 - PubMed
  2. J Control Release. 2011 Jun 10;152(2):286-93 - PubMed
  3. Opt Express. 2008 Mar 3;16(5):3021-31 - PubMed
  4. Nanotechnology. 2010 Feb 26;21(8):85102 - PubMed
  5. Nat Rev Drug Discov. 2009 Feb;8(2):129-38 - PubMed
  6. J Neurosci Methods. 2008 Sep 30;174(2):215-8 - PubMed
  7. Lasers Surg Med. 2006 Jul;38(6):631-42 - PubMed
  8. Chem Soc Rev. 2006 Mar;35(3):209-17 - PubMed
  9. J Phys D Appl Phys. 2008;41(18):185501 - PubMed
  10. Chem Rev. 2003 Feb;103(2):577-644 - PubMed
  11. Arthritis Res Ther. 2008;10(3):110 - PubMed
  12. Nanomedicine (Lond). 2006 Dec;1(4):473-80 - PubMed
  13. ACS Nano. 2010 Apr 27;4(4):2109-23 - PubMed
  14. Trends Biotechnol. 2006 Feb;24(2):62-7 - PubMed
  15. Nanomaterials (Basel). 2011 Jun 14;1(1):31-63 - PubMed
  16. Biophys J. 2003 Jun;84(6):4023-32 - PubMed
  17. Biomaterials. 2012 Jul;33(21):5441-50 - PubMed
  18. J Biomed Opt. 2005 Nov-Dec;10(6):064012 - PubMed
  19. J Biomed Opt. 2009 Sep-Oct;14(5):054034 - PubMed
  20. Lasers Surg Med. 2004;34(3):242-8 - PubMed
  21. Biotechnol J. 2009 Nov;4(11):1559-72 - PubMed
  22. Fungal Genet Biol. 2009 Oct;46(10):721-30 - PubMed
  23. Cell Commun Adhes. 2006 Jul-Aug;13(4):217-22 - PubMed
  24. Biophys J. 2001 Feb;80(2):755-64 - PubMed
  25. Nano Lett. 2012 Sep 12;12(9):4763-9 - PubMed
  26. Nanotechnology. 2010 Jun 4;21(22):225102 - PubMed
  27. Mol Biotechnol. 2009 Oct;43(2):167-76 - PubMed
  28. ACS Nano. 2009 Jan 27;3(1):16-20 - PubMed
  29. Biomed Opt Express. 2011 Jan 11;2(2):291-304 - PubMed
  30. Gene Ther. 2006 Sep;13(18):1313-9 - PubMed
  31. Mol Ther. 2006 Jan;13(1):151-9 - PubMed
  32. J Phys Chem B. 2005 Mar 3;109(8):3104-11 - PubMed
  33. Biomaterials. 2012 Mar;33(7):2345-50 - PubMed
  34. Bioessays. 2008 Jun;30(6):606-10 - PubMed
  35. Nanoscale. 2011 Feb;3(2):410-20 - PubMed
  36. Nature. 1999 Oct 7;401(6753):517-8 - PubMed
  37. Cancer Lett. 2006 Jul 28;239(1):36-45 - PubMed

Publication Types